首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   17篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   8篇
  2017年   2篇
  2016年   7篇
  2015年   10篇
  2014年   9篇
  2013年   13篇
  2012年   24篇
  2011年   15篇
  2010年   17篇
  2009年   6篇
  2008年   13篇
  2007年   16篇
  2006年   9篇
  2005年   16篇
  2004年   11篇
  2003年   12篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1977年   1篇
排序方式: 共有227条查询结果,搜索用时 187 毫秒
11.
Olive pollen is one of the main causes of allergy in Mediterranean countries. Ole e 6, an olive pollen allergen, is a small (5.8 kDa) and acidic protein (pI 4.2) and no homologous proteins have been isolated or characterized so far. Ole e 6 has been efficiently expressed in the methylotrophic yeast Pichia pastoris. The cDNA encoding Ole e 6 was inserted into the plasmid vector pPIC9 and overexpressed in GS115 yeast cells. The recombinant product was purified by size-exclusion chromatography followed by reverse-phase HPLC. N-terminal sequencing, amino acid composition analysis, CD, NMR, and IgG-binding experiments were employed to characterize the purified protein. NMR data revealed the oxidation of the methionine at position 28 in approximately 50% of the recombinant protein but, although this alters its electrophoretic behavior, it did not affect folding or IgG-binding properties of rOle e 6. The recombinant form of Ole e 6 expressed in P. pastoris can be employed for structural and biochemical studies.  相似文献   
12.
Liakopoulos D  Kusch J  Grava S  Vogel J  Barral Y 《Cell》2003,112(4):561-574
Spindle alignment is the process in which the two spindle poles are directed toward preselected and opposite cell ends. In budding yeast, the APC-related molecule Kar9 is required for proper alignment of the spindle with the mother-bud axis. We find that Kar9 localizes to the prospective daughter cell spindle pole. Kar9 is transferred from the pole to cytoplasmic microtubules, which are then guided in a myosin-dependent manner to the bud. Clb4/Cdc28 kinase phosphorylates Kar9 and accumulates on the pole destined to the mother cell. Mutations that block phosphorylation at Cdc28 consensus sites result in localization of Kar9 to both poles and target them both to the bud. Thus, Clb4/Cdc28 prevents Kar9 loading on the mother bound pole. In turn, asymmetric distribution of Kar9 ensures that only one pole orients toward the bud. Our results indicate that Cdk1-dependent spindle asymmetry ensures proper alignment of the mitotic spindle with the cell division axis.  相似文献   
13.
BackgroundLeishmaniasis is a complex disease in which clinical outcome depends on factors such as parasite species, host genetics and immunity and vector species. In Brazil, Leishmania (Viannia) braziliensis is a major etiological agent of cutaneous (CL) and mucosal leishmaniasis (MCL), a disfiguring form of the disease, which occurs in ~10% of L. braziliensis-infected patients. Thus, clinical isolates from patients with CL and MCL may be a relevant source of information to uncover parasite factors contributing to pathogenesis. In this study, we investigated two pairs of L. (V.) braziliensis isolates from mucosal (LbrM) and cutaneous (LbrC) sites of the same patient to identify factors distinguishing parasites that migrate from those that remain at the primary site of infection.Conclusions/SignificanceDespite sharing high similarity at the genome structure and ploidy levels, the parasites exhibited divergent expressed genomes. The proteome and metabolome results indicated differential profiles between the cutaneous and mucosal isolates, primarily related to inflammation and chemotaxis. BALB/c infection revealed that the cutaneous isolates were more virulent than the mucosal parasites. Furthermore, our data suggest that the LbrPGF2S protein is a candidate to contribute to parasite virulence profiles in the mammalian host.  相似文献   
14.
Infections with RNA viruses are sensed by the innate immune system through membrane-bound Toll-like receptors or the cytoplasmic RNA helicases RIG-I and MDA-5. It is believed that MDA-5 is crucial for sensing infections by picornaviruses, but there have been no studies on the role of this protein during infection with poliovirus, the prototypic picornavirus. Beginning at 4 h postinfection, MDA-5 protein is degraded in poliovirus-infected cells. Levels of MDA-5 declined beginning at 6 h after infection with rhinovirus type 1a or encephalomyocarditis virus, but the protein was stable in cells infected with rhinovirus type 16 or echovirus type 1. Cleavage of MDA-5 is not carried out by either poliovirus proteinase 2Apro or 3Cpro. Instead, degradation of MDA-5 in poliovirus-infected cells occurs in a proteasome- and caspase-dependent manner. Degradation of MDA-5 during poliovirus infection correlates with cleavage of poly(ADP) ribose polymerase (PARP), a hallmark of apoptosis. Induction of apoptosis by puromycin leads to cleavage of both PARP and MDA-5. The MDA-5 cleavage product observed in cells treated with puromycin is approximately 90 kDa, similar in size to the putative cleavage product observed in poliovirus-infected cells. Poliovirus-induced cleavage of MDA-5 may be a mechanism to antagonize production of type I interferon in response to viral infection.  相似文献   
15.
CD1 antigen presentation: how it works   总被引:2,自引:0,他引:2  
The classic concept of self-non-self discrimination by the immune system focused on the recognition of fragments from proteins presented by classical MHC molecules. However, the discovery of MHC-class-I-like CD1 antigen-presentation molecules now explains how the immune system also recognizes the abundant and diverse universe of lipid-containing antigens. The CD1 molecules bind and present amphipathic lipid antigens for recognition by T-cell receptors. Here, we outline the recent advances in our understanding of how the processes of CD1 assembly, trafficking, lipid-antigen binding and T-cell activation are achieved and the new insights into how lipid antigens differentially elicit CD1-restricted innate and adaptive T-cell responses.  相似文献   
16.
Infection with Helicobacter pylori strains containing high number of EPIYA-C phosphorylation sites in the CagA is associated with significant gastritis and increased risk of developing pre-malignant gastric lesions and gastric carcinoma. However, these findings have not been reproduced in animal models yet. Therefore, we investigated the effect on the gastric mucosa of Mongolian gerbil (Meriones unguiculatus) infected with CagA-positive H. pylori strains exhibiting one or three EPIYA-C phosphorilation sites. Mongolian gerbils were inoculated with H. pylori clonal isolates containing one or three EPIYA-C phosphorylation sites. Control group was composed by uninfected animals challenged with Brucella broth alone. Gastric fragments were evaluated by the modified Sydney System and digital morphometry. Clonal relatedness between the isolates was considered by the identical RAPD-PCR profiles and sequencing of five housekeeping genes, vacA i/d region and of oipA. The other virulence markers were present in both isolates (vacA s1i1d1m1, iceA2, and intact dupA). CagA of both isolates was translocated and phosphorylated in AGS cells. After 45 days of infection, there was a significant increase in the number of inflammatory cells and in the area of the lamina propria in the infected animals, notably in those infected by the CagA-positive strain with three EPIYA-C phosphorylation sites. After six months of infection, a high number of EPIYA-C phosphorylation sites was associated with progressive increase in the intensity of gastritis and in the area of the lamina propria. Atrophy, intestinal metaplasia, and dysplasia were also observed more frequently in animals infected with the CagA-positive isolate with three EPIYA-C sites. We conclude that infection with H. pylori strain carrying a high number of CagA EPIYA-C phosphorylation sites is associated with more severe gastric lesions in an animal model of H. pylori infection.Key words: Gastritis, atrophy, intestinal metaplasia, dysplasia, Mongolian gerbil, cagA EPIYA C motif  相似文献   
17.
The orientation of the mitotic spindle plays a key role in determining whether a polarized cell will divide symmetrically or asymmetrically. In most cell types, cytoplasmic dynein plays a critical role in spindle orientation. However, how dynein directs opposite spindle poles toward distinct and predetermined cell ends is poorly understood. Here, we show that dynein distributes preferentially to the spindle pole bodies (SPB) and astral microtubules (MTs) proximal to the bud in metaphase yeast cells. Dynein asymmetry depended on the bud neck kinases Elm1, Hsl1, and Gin4, on the spindle pole components Cnm67 and Cdk1, and on the B-type cyclins Clb1 and Clb2. Furthermore, phenotypic and genetic studies both indicated that dynein is unable to orient the spindle when it localizes to both poles and associated microtubules. Together, our data indicate that proper orientation of the spindle requires dynein to act on a single spindle pole.  相似文献   
18.
The biogenesis of nuclear pore complexes (NPCs) represents a paradigm for the assembly of high-complexity macromolecular structures. So far, only three integral pore membrane proteins are known to function redundantly in NPC anchoring within the nuclear envelope. Here, we describe the identification and functional characterization of Pom33, a novel transmembrane protein dynamically associated with budding yeast NPCs. Pom33 becomes critical for yeast viability in the absence of a functional Nup84 complex or Ndc1 interaction network, which are two core NPC subcomplexes, and associates with the reticulon Rtn1. Moreover, POM33 loss of function impairs NPC distribution, a readout for a subset of genes required for pore biogenesis, including members of the Nup84 complex and RTN1. Consistently, we show that Pom33 is required for normal NPC density in the daughter nucleus and for proper NPC biogenesis and/or stability in the absence of Nup170. We hypothesize that, by modifying or stabilizing the nuclear envelope–NPC interface, Pom33 may contribute to proper distribution and/or efficient assembly of nuclear pores.  相似文献   
19.
Genetic code redundancy allows most amino acids to be encoded by multiple codons that are non-randomly distributed along coding sequences. An accepted theory explaining the biological significance of such non-uniform codon selection is that codons are translated at different speeds. Thus, varying codon placement along a message may confer variable rates of polypeptide emergence from the ribosome, which may influence the capacity to fold toward the native state. Previous studies report conflicting results regarding whether certain codons correlate with particular structural or folding properties of the encoded protein. This is partly due to different criteria traditionally utilized for predicting translation speeds of codons, including their usage frequencies and the concentration of tRNA species capable of decoding them, which do not always correlate. Here, we developed a metric to predict organism-specific relative translation rates of codons based on the availability of tRNA decoding mechanisms: Watson-Crick, non-Watson-Crick or both types of interactions. We determine translation rates of messages by pulse-chase analyses in living Escherichia coli cells and show that sequence engineering based on these concepts predictably modulates translation rates in a manner that is superior to codon usage frequency, which occur during the elongation phase, and significantly impacts folding of the encoded polypeptide. Finally, we demonstrate that sequence harmonization based on expression host tRNA pools, designed to mimic ribosome movement of the original organism, can significantly increase the folding of the encoded polypeptide. These results illuminate how genetic code degeneracy may function to specify properties beyond amino acid encoding, including folding.  相似文献   
20.
The genus Bartonella was detected by PCR in 5.7% (12/212) of wild carnivores from Northern Spain. Based on hybridization and sequence analyses, Bartonella henselae was identified in a wildcat (Felis silvestris), Bartonella rochalimae in a red fox (Vulpes vulpes) and in a wolf (Canis lupus), and Bartonella sp. in badgers (Meles meles).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号