首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   14篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   11篇
  2012年   16篇
  2011年   19篇
  2010年   7篇
  2009年   2篇
  2008年   10篇
  2007年   13篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   7篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1973年   1篇
  1969年   1篇
  1953年   1篇
  1919年   1篇
排序方式: 共有165条查询结果,搜索用时 828 毫秒
81.
Splenic blood storage is usually considered a characteristic restricted to Carnivora, Perissodactyla, and Ruminantia. In these mammals, the red pulp comprises the major part of the organ and – within it – the cords show a vast extension, allowing the storage of a great quantity of erythrocytes. Moreover, well-muscularized capsule and trabeculae permit a strong contractility. In this way, a significant quantity of erythrocytes can be poured into the circulation in response to an increased demand of oxygen. These spleens are usually classified as the “storing type,” in contrast to the “defensive type,” characterized by negligible quantity of blood stored. Past evolutionary interpretations have seen the former type as derived from the latter one. This explanation was based on some ontogenetic observations, thus deriving from the approach of Haeckel’s biogenetic law, and caused some contradictions that remained unsolved. An in-depth examination of the literature reveals that almost all mammalian species can store erythrocytes in their spleen. What changes is the quantity of this storage and the efficiency of its release. This means that the dichotomy between “storage” and “defensive” types is just an approximation – and not very useful. Splenic storage, indeed, is not a recently acquired character by some mammals, rather a primitive one, that underwent different quantitative and qualitative changes during the evolution of the different mammalian lineages. This review offers a new hypothesis on the evolution of this function (viewing the presence of splenic erythropoiesis as a biological constraint) and proposes it as a case of exaptation.  相似文献   
82.
The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.  相似文献   
83.
One of multiple testing problems in drug finding experiments is the comparison of several treatments with one control. In this paper we discuss a particular situation of such an experiment, i.e., a microarray setting, where the many-to-one comparisons need to be addressed for thousands of genes simultaneously. For a gene-specific analysis, Dunnett's single step procedure is considered within gene tests, while the FDR controlling procedures such as Significance Analysis of Microarrays (SAM) and Benjamini and Hochberg (BH) False Discovery Rate (FDR) adjustment are applied to control the error rate across genes. The method is applied to a microarray experiment with four treatment groups (three microarrays in each group) and 16,998 genes. Simulation studies are conducted to investigate the performance of the SAM method and the BH-FDR procedure with regard to controlling the FDR, and to investigate the effect of small-variance genes on the FDR in the SAM procedure.  相似文献   
84.
85.
86.
Surface plasmon resonance (SPR)-based biosensors have been widely utilized for measuring interactions of a variety of molecules. Fewer examples include higher biological entities such as bacteria and viruses, and even fewer deal with plant viruses. Here, we describe the optimization of an SPR sensor chip for evaluation of the interaction of the economically relevant filamentous Potato virus Y (PVY) with monoclonal antibodies. Different virus isolates were efficiently and stably bound to a previously immobilized polyclonal antibody surface, which remained stable over subsequent injection regeneration steps. The ability of the biosensor to detect and quantify PVY particles was compared with ELISA and RT-qPCR. Stably captured virus surfaces were successfully used to explore kinetic parameters of the interaction of a panel of monoclonal antibodies with two PVY isolates representing the main viral serotypes N and O. In addition, the optimized biosensor proved to be suitable for evaluating whether two given monoclonal antibodies compete for the same epitope within the viral particle surface. The strategy proposed in this work can help to improve existing serologic diagnostic tools that target PVY and will allow investigation of the inherent serological variability of the virus and exploration for new interactions of PVY particles with other proteins.  相似文献   
87.
The three deleted in liver cancer genes (DLC1–3) encode Rho-specific GTPase-activating proteins (RhoGAPs). Their expression is frequently silenced in a variety of cancers. The RhoGAP activity, which is required for full DLC-dependent tumor suppressor activity, can be inhibited by the Src homology 3 (SH3) domain of a Ras-specific GAP (p120RasGAP). Here, we comprehensively investigated the molecular mechanism underlying cross-talk between two distinct regulators of small GTP-binding proteins using structural and biochemical methods. We demonstrate that only the SH3 domain of p120 selectively inhibits the RhoGAP activity of all three DLC isoforms as compared with a large set of other representative SH3 or RhoGAP proteins. Structural and mutational analyses provide new insights into a putative interaction mode of the p120 SH3 domain with the DLC1 RhoGAP domain that is atypical and does not follow the classical PXXP-directed interaction. Hence, p120 associates with the DLC1 RhoGAP domain by targeting the catalytic arginine finger and thus by competitively and very potently inhibiting RhoGAP activity. The novel findings of this study shed light on the molecular mechanisms underlying the DLC inhibitory effects of p120 and suggest a functional cross-talk between Ras and Rho proteins at the level of regulatory proteins.  相似文献   
88.
The Computational Modeling in Biology Network (COMBINE) is an initiative to coordinate the development of community standards and formats in computational systems biology and related fields. This report summarizes the topics and activities of the fourth edition of the annual COMBINE meeting, held in Paris during September 16-20 2013, and attended by a total of 96 people. This edition pioneered a first day devoted to modeling approaches in biology, which attracted a broad audience of scientists thanks to a panel of renowned speakers. During subsequent days, discussions were held on many subjects including the introduction of new features in the various COMBINE standards, new software tools that use the standards, and outreach efforts. Significant emphasis went into work on extensions of the SBML format, and also into community-building. This year’s edition once again demonstrated that the COMBINE community is thriving, and still manages to help coordinate activities between different standards in computational systems biology.  相似文献   
89.
Herein, we report the first experimental demonstration of surface plasmon enhancement at a liquid–metal–liquid interface using a pseudo-Kretschmann geometry. Pumping gold nanoparticle clusters at the interface of a p-xylene–water mixture, we were able to measure a fluorescence enhancement of three orders of magnitude in Rose Bengal at an excitation wavelength of 532 nm. The observed increase is due to the local electric field enhancement and the reduction of the fluorescence lifetime of dye molecules in the close vicinity of the metal surface. Theoretical modeling using the T-matrix method of the electric field intensity enhancement of emulated surfaces supports the experimental results. This new approach will open a new road for the study of dynamic systems using plasmonics.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号