首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   13篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   14篇
  2014年   10篇
  2013年   14篇
  2012年   9篇
  2011年   11篇
  2010年   13篇
  2009年   6篇
  2008年   15篇
  2007年   11篇
  2006年   8篇
  2005年   13篇
  2004年   6篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1984年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有192条查询结果,搜索用时 46 毫秒
71.
Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land‐use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress‐induced emissions due to climate change.  相似文献   
72.
Subcutaneous transplantation of mesenchymal stromal cells (MSC) emerged as an alternative to intravenous administration because it avoids the pulmonary embolism and prolongs post‐transplantation lifetime. The goal of this study was to investigate the mechanisms by which these cells could affect remote organs. To this aim, murine bone marrow–derived MSC were subcutaneously transplanted in different anatomical regions and the survival and behaviour have been followed. The results showed that upon subcutaneous transplantation in mice, MSC formed multicellular aggregates and did not migrate significantly from the site of injection. Our data suggest an important role of hypoxia‐inducible signalling pathways in stimulating local angiogenesis and the ensuing modulation of the kinetics of circulating cytokines with putative protective effects at distant sites. These data expand the current understanding of cell behaviour after subcutaneous transplantation and contribute to the development of a non‐invasive cell‐based therapy for distant organ protection.  相似文献   
73.
The feeding performance and behavior at the onset of exogenous feeding, 3 to 4 days after hatching (DAH), were studied in red porgy Pagrus pagrus larvae. Similar feeding efficiency and intensity were achieved for two feeding treatments (live or freeze-dried rotifers) suggesting that prey movement is not decisive for their detection and capture and demonstrating that at first feeding red porgy larvae can ingest inert food. Larvae feeding performance was not affected by a diet shift between treatments. Based on maximum rotifers consumption and gut evacuation time at 18 °C, the daily ration was estimated as 14.035 μg, considering 14 h of feeding and a 25% egg:female rotifer ratio. Larval swimming activity measured by video recording showed a close association with gut fullness and similar swimming patterns for 3 and 4 DAH larvae. However, 20.3% larger mouth gape and 54.6% higher swimming speed of the older larvae should provide a better feeding performance and more energy needed for growth.  相似文献   
74.
Volatile organic compound (VOC) emissions from Norway spruce ( Picea abies ) saplings were monitored in response to a temperature ramp. Online measurements were made with a proton transfer reaction – mass spectrometer under controlled conditions, together with plant physiological variables. Masses corresponding to acetic acid and acetone were the most emitted VOCs. The emission rates of m137 (monoterpenes), m59 (acetone), m33 (methanol), m83 (hexanal, hexenals), m85 (hexanol) and m153 (methyl salicylate, MeSa) increased exponentially with temperature. The emission of m61 (acetic acid) and m45 (acetaldehyde), however, increased with temperature only until saturation around 30°C, closely following the pattern of transpiration rates. These results indicate that algorithms that use only incident irradiance and leaf temperature as drivers to predict VOC emission rates may be inadequate for VOCs with lower H, and consequently higher sensitivity to stomatal conductance.  相似文献   
75.
Clinical methods used to assess the electrical activity of excitable cells are often limited by their poor spatial resolution or their invasiveness. One promising solution to this problem is to optically measure membrane potential using a voltage-sensitive dye, but thus far, none of these dyes have been available for human use. Here we report that indocyanine green (ICG), an infrared fluorescent dye with FDA approval as an intravenously administered contrast agent, is voltage-sensitive. The fluorescence of ICG can follow action potentials in artificial neurons and cultured rat neurons and cardiomyocytes. ICG also visualized electrical activity induced in living explants of rat brain. In humans, ICG labels excitable cells and is routinely visualized transdermally with high spatial resolution. As an infrared voltage-sensitive dye with a low toxicity profile that can be readily imaged in deep tissues, ICG may have significant utility for clinical and basic research applications previously intractable for potentiometric dyes.Voltage-sensitive dyes provide a way to observe cellular electrical activity without the physical limitations imposed by electrodes. Although these dyes can monitor membrane potential with a resolution of a few microns from large populations of cells (1), there are three obstacles that prevent the use of these dyes in many research settings, including clinical research:
  • 1.Most voltage-sensitive dyes use visible wavelengths of light that prevent imaging of tissues beneath the skin.
  • 2.Many of these dyes produce significant toxicity or off-target effects (2).
  • 3.Before this report, to our knowledge, no voltage-sensitive dyes have ever been available for administration in humans, which has limited their value in biomedically focused research.
Here, we show that indocyanine green (ICG), an FDA-approved fluorescent dye routinely used in many clinical tests, is voltage-sensitive. Our initial experimental system used Xenopus laevis oocytes. Changes in the membrane potential of the cell induced by two-electrode voltage-clamp resulted in robust, consistent changes in the fluorescence of ICG (Fig. 1, inset). All data in this work was obtained from single acquisitions with no averaging of multiple images. The voltage-dependent fluorescence changes were roughly linear with respect to membrane potential and had a magnitude of ∼1.9% of the baseline fluorescence per 100 mV of membrane potential change (Fig. 1). Additionally, ICG displayed a rapid response with a primary time constant of 4 ms (see Fig. S1 in the Supporting Material), suggesting that this dye could successfully monitor action potentials.Open in a separate windowFigure 1ICG-labeled oocytes showed that ICG’s fluorescence (blue points) is roughly linearly dependent (red line, fit to data) with voltage. (Inset) Oocyte membrane potential was held at −60 mV and then pulsed to potentials ranging from −120 mV (blue) to +120 mV (red). Ex: 780 nm, Em: 818–873 nm.To test this hypothesis, we transformed our oocytes into synthetic neurons, previously dubbed “excitocytes”, by coinjecting them with cRNA of voltage-gated sodium (Nav) and potassium channel components (3). Under suitable current-clamp conditions, excitocytes fire trains of action potentials similar to those in naturally excitable cells. ICG’s fluorescence clearly recapitulated action potentials firing at speeds above 100 Hz (Fig. 2 A), faster than the physiological firing rates of most neurons (4).Open in a separate windowFigure 2ICG can monitor action potentials. (A) Oocytes coinjected with voltage-gated sodium and potassium channel cRNA fired action potentials (bottom, green) when held under current clamp. ICG fluorescence changes (top, blue) detected these action potentials at a rate of 107 Hz. Stimulus start (black arrow) and end (red arrow) are shown. (B and C) ICG fluorescence (blue, inverted) distinguished between healthy action potentials from wild-type sodium channels (B, green) and diseased action potentials from sodium channels with a myotonic substitution (C, green). Cells are stimulated for the entire time course of these panels. The delay between action potentials and the ICG signal is due to a low-pass filtering effect caused by the dye response time and the camera integration time. (D) In cells with myotonic sodium channels, a brief stimulus (top, black) was sufficient to elicit a train of action potentials (bottom, green) that only ceased upon significant hyperpolarization, as expected in a myotonia. ICG fluorescence (middle, blue) successfully followed each one of these action potentials.We extended the excitocyte technique from wild-type channels to evaluation of channelopathies and their effects on excitability to determine whether ICG could discriminate between normal and diseased action potentials based on shape. We compared excitocytes injected with wild-type Nav channel cRNA to those injected with cRNA coding for a version of Nav channel containing a point mutation, G1306E, which produces episodic myotonia (5). This disease is characterized by continued action potential firing in skeletal muscles after cessation of voluntary stimuli; the resulting prolonged muscle contractions are the hallmark of myotonia. Compared to the wild-type Nav channel, the G1306E mutation causes a slowing of the fast inactivation of the Nav channels, which in turn results in broadened action potentials (5). The electrical recordings and the ICG fluorescence response clearly distinguished the sharp action potentials produced by the healthy sodium channel (Fig. 2 B, and see Fig. S2) from the wider peaks produced by the myotonic sodium channel (Fig. 2 C, and see Fig. S2). Furthermore, a brief injection of current led to repetitive firing and hyperexcitability that persisted after the stimulus was stopped. ICG fluorescence clearly resolved every action potential of this myotonia-like behavior (Fig. 2 D). The successful recreation of disease-like action potentials validates the excitocyte system as a convenient method for investigating the electrophysiological effects of channelopathies.We next investigated whether ICG’s voltage sensitivity extended to excitable mammalian tissue. This validation was critical, inasmuch as other voltage-sensitive dyes have shown promise in invertebrate preparations but had much smaller signals in mammalian cells (6). We first measured ICG fluorescence from cultured rat dorsal root ganglion neurons. Under whole-cell current clamp, we observed neurons firing in the stereotypical fashion of the nociceptive C-type fiber, and these action potentials were clearly visible in the ICG fluorescence (Fig. 3 A, and see Fig. S3). We also examined syncytia of cultured cardiomyocytes from neonatal rats (7) to further validate ICG’s utility; these cells beat spontaneously and showed changes in ICG fluorescence indicative of changes in membrane potential (Fig. 3 B). Although we cannot formally exclude the possibility that the cardiomyocytes’ physical motion produced fluorescence changes, several observations suggested that these effects were minimal (see Fig. S4). Taken together, our results in frog and rat cells confirmed that ICG voltage sensitivity was broadly applicable across a range of tissues and not confined to a particular animal or cell lineage.Open in a separate windowFigure 3ICG follows electrical activity in living mammalian tissue. (A) Rat cultured dorsal root ganglion cells under current-clamp (black arrow, pulse start; red arrow, pulse end) fired action potentials (green), that ICG fluorescence tracked (blue, inverted, low-pass-filtered at 225 Hz; blue arrow, relative fluorescence change). (B) ICG fluorescence sensed spontaneous membrane potential changes in cardiomyocyte syncytia. (C) In rat brain slices, ICG responds differently to no stimulus (black) and stimuli of increasing intensity (magenta, cyan, green, and blue, increasing amplitude; scale bar shows relative fluorescence change). Weaker stimuli traces (e.g., magenta) show complete fluorescence recovery whereas larger stimuli (e.g., blue) do not fully recover within this time course; traces are vertically offset for clarity. (D) Tetrodotoxin (TTX) reduced the ICG response to a stimulus over 12 min (green, pre-TTX; cyan, magenta, and black, increasing time post-TTX; low-pass-filtered at 40 Hz; black arrow, stimulus).Finally, we tested whether ICG voltage sensitivity could be detected in a complex tissue. Rat hippocampal slice cultures comprise a well-described organotypic preparation in which the three-dimensional architecture, neuronal connections, and glial interactions are maintained (8,9). Using these rat brain explants, we found that brain excitation produced by field electrode stimulation was clearly accompanied by ICG fluorescence changes (see Fig. S5). Additionally, ICG discriminated between electrical responses caused by differing excitation intensities and durations (Fig. 3 C, and see Fig. S5). To confirm that the fluorescence changes originated from changes in excitable cell activity, we used the Nav channel blocker tetrodotoxin (TTX). When applied to brain slices, electrical excitability was clearly inhibited (Fig. 3 D, and see Fig. S5) and partial recovery was observed upon subsequent TTX removal (see Fig. S5). These signals measuring brain slice activity were similar in shape and magnitude to those reported using other voltage-sensitive dyes (10,11). This demonstrates that ICG can report on electrical activity even in a physiological architecture with many nonexcitable cells.To our knowledge, this is the first report that a clinically approved fluorescent dye is voltage-sensitive. Our results demonstrate that indocyanine green can accurately detect action potentials at firing rates common in mammalian neurons, and that it is sensitive enough to distinguish between healthy and diseased action potentials in a model system. ICG can measure electrical activity in mammalian neurons, cardiomyocytes, and explanted brain tissue. This voltage sensitivity was observed with both monochromatic and broad-band illumination sources (data not shown), under labeling conditions that differed in solution composition, duration, and dye concentration (see Methods in the Supporting Material), and at temperatures ranging from 19°C to 30°C. ICG’s water solubility further extends its potential utility. This robustness suggests that ICG can be used to measure voltage in many environments and tissues.ICG has been FDA-approved for use in ophthalmic angiography, as well as in tests of cardiac output and hepatic function (12) and is additionally used off-label in a number of surgical applications (13). Interestingly, ICG has been shown to clearly label retinal ganglion cells in human patients (see Fig. S6) (14). This provides immediate motivation for biomedical investigations, because laboratory findings with ICG can potentially be translated to humans. Although many other voltage-sensitive dyes have been described, some with similar structures to ICG (15) and others with faster or larger signals (15,16), as of this writing none of these are FDA-approved. Additionally, ICG utilizes wavelengths further into the infrared spectrum than other available fast potentiometric dyes (17) and can thus be imaged in tissues up to 2 cm deep (18). This presents the possibility of optically imaging electrical activity deeper inside tissues than is feasible today. Although two-photon excitation with voltage-sensitive dyes can improve imaging depth, it remains intrinsically limited by the unaffected emission wavelength (19). Finally, ICG has been used in patients for more than 50 years and is known to have low toxicity (18,20). These properties suggest that ICG voltage sensitivity could extend the capabilities of modern electrophysiological techniques for disease diagnosis and monitoring in the clinic, and allow for the investigation of previously inaccessible experimental systems in basic research.  相似文献   
76.
Clinical methods used to assess the electrical activity of excitable cells are often limited by their poor spatial resolution or their invasiveness. One promising solution to this problem is to optically measure membrane potential using a voltage-sensitive dye, but thus far, none of these dyes have been available for human use. Here we report that indocyanine green (ICG), an infrared fluorescent dye with FDA approval as an intravenously administered contrast agent, is voltage-sensitive. The fluorescence of ICG can follow action potentials in artificial neurons and cultured rat neurons and cardiomyocytes. ICG also visualized electrical activity induced in living explants of rat brain. In humans, ICG labels excitable cells and is routinely visualized transdermally with high spatial resolution. As an infrared voltage-sensitive dye with a low toxicity profile that can be readily imaged in deep tissues, ICG may have significant utility for clinical and basic research applications previously intractable for potentiometric dyes.  相似文献   
77.
The tumor microenvironment plays key roles in cancer biology, but its impact on the regulation of signaling pathway activity in cancer cells has not been systemically investigated. We designed an analytical strategy that allows differential analysis of signaling between cancer and stromal cells present in tumor xenografts. We used this approach to investigate how in vivo growth conditions and PI3K inhibitors regulate pathway activities in both cancer and stromal cell populations. We found that, despite inducing more modest changes in protein expression, in vivo growing conditions extensively rewired protein kinase networks in cancer cells. As a result, different sets of phosphorylation sites were modulated by PI3K inhibitors in cancer cells growing in tumors relative to when these cells were in culture. The p110δ PI3K-selective compound CAL-101 (Idelalisib) did not inhibit markers of PI3K activity in cancer or stromal cells; however, unexpectedly, it induced phosphorylation on SQ motifs in both subpopulations of tumor cells in vivo but not in vitro. Thus, the interaction between cancer cells and the stroma modulated the ability of PI3K inhibitors to induce the activation of apoptosis in solid tumors. Our study provides proof-of-principle of a proteomics workflow for measuring signaling specifically in cancer and stromal cells and for investigating how cancer biochemistry is modulated in vivo.Solid tumors contain a heterogeneous population of cells. Transformed epithelial cells recruit different types of somatic cells to the tumor microenvironment where they influence varying aspects of cancer biology. The role of heterotypic communication between normal stromal cells and transformed cancer cells is well established (1, 2). Different somatic cell types, including fibroblasts, epithelial cells, and cells of the immune system—all of which are found in tumors—promote cancer cell development by means of gap-junction intercellular communication, direct cell-to-cell contacts, and by the release of growth factors, enzymes, and cytokines that act on neighboring malignant cells (36).The tumor microenvironment determines the ability of cancer cells to survive in specific organs and their ability to proliferate and metastasize (79). Growth factors released from tumor-associated stromal cells also influence how cancer cells respond to drug administration (10). Therefore, the advancement of targeted cancer therapies requires an understanding of how the tumor microenvironment modulates the biochemistry of transformed cancer cells. In addition, targeting the tumor stroma is emerging as an intriguing concept for the development of anti-cancer therapies (11). It is therefore important to investigate specific effects of compounds in clinical development on stromal cells in addition to those exerted toward malignant cancer cells (12).Here we investigated the effects that changes in growing conditions from a two-dimensional cell culture to an in vivo three-dimensional tumor environment had in modulating protein and phosphoprotein expression in human cancer cells. For this, we used mass spectrometry (MS) to specifically measure cancer and stromal proteomes and phosphoproteomes within mouse tumor xenografts.We also investigated the effects that the pharmacological inhibitors of PI3K, namely GDC-0941 or CAL-101, would have on the phosphoproteomes of stromal cells relative to cancer cells in solid tumors. GDC-0941 is an inhibitor with specificity for class I PI3Ks, whereas CAL-101 specificity is restricted to the p110δ isoform of PI3K (13, 14), which in untransformed tissues is mainly found in leukocytes (15). The PI3K signaling pathway is often deregulated in different cancer types (16), including colorectal cancer (17), and both compounds used in this study are in different stages of clinical development (1820). PI3K signaling has also been implicated in mediating the effects that the microenvironment has on cancer cells (21).We found that in vivo growth conditions had profound effects on phosphoprotein expression, which was reflected on the phosphorylation sites modulated by PI3K inhibitors in vivo relative to in vitro and in their ability to induce apoptotic markers across these two cell culture conditions.  相似文献   
78.
A number of N6-(N-arylcarbamoyl)-2-substituted-9-benzyl-8-azaadenines, obtained by a modification of the synthetic scheme used to prepare selective A1 ligands, by only three or two steps, are described. At first we prepared a series of 2-phenyl-9-benzyl-8-azaadenines having as N6 substituent a variously substituted N-phenylcarbamoyl group. Some of these derivatives demonstrated good affinity towards the A3 subtype but low selectivity. Compounds having p-CF3, p-F and p-OCH3, as substituents on the phenylcarbamoyl group were selected as lead compounds for the second part of this study. Without modifying the N6 substituent, which would assure A3 affinity, we varied the 9 and 2 positions on these molecules to enhance selectivity. Some compounds having a p-methyl group on the 2-phenyl substituent showed a very good affinity and selectivity for the A3 subtype, revealing the first class of A3 adenosine receptor selective antagonists with a bicyclic structure strictly correlated to the adenine nucleus. The molecular modelling work, carried out using the DOCK program, supplied two models which may be useful for a better understanding of the binding modes. Both models highlighted the preferred interacting tautomeric forms of the antagonists for human A1 and A3 receptors.  相似文献   
79.

Background

Dental implant has been successfully used to replace missing teeth. However, in some clinical situations, implant placement may be difficult because of a large bone defect. We designed novel complex biomaterial to simultaneously restore bone and place implant. This complex was incorporated implant into interconnected porous calcium hydroxyapatite (IP-CHA). We then tested this Implant/IP-CHA complex and evaluated its effect on subsequent bone regeneration and implant stability in vivo.

Methodology/Principal Findings

A cylinder-type IP-CHA was used in this study. After forming inside of the cylinder, an implant was placed inside to fabricate the Implant/IP-CHA complex. This complex was then placed into the prepared bone socket in the femur of four beagle-Labrador hybrid dogs. As a control, implants were placed directly into the femur without any bone substrate. Bone sockets were allowed to heal for 2, 3 and 6 months and implant stability quotients (ISQ) were measured. Finally, tissue blocks containing the Implant/IP-CHA complexes were harvested. Specimens were processed for histology and stained with toluidine blue and bone implant contact (BIC) was measured. The ISQs of complex groups was 77.8±2.9 in the 6-month, 72.0±5.7 in the 3-month and 47.4±11.0 in the 2-month. There was no significant difference between the 3- or 6-month complex groups and implant control groups. In the 2-month group, connective tissue, including capillary angiogenesis, was predominant around the implants, although newly formed bone could also be observed. While, in the 3 and 6-month groups, newly formed bone could be seen in contact to most of the implant surface. The BICs of complex groups was 2.18±3.77 in the 2-month, 44.03±29.58 in the 3-month, and 51.23±8.25 in the 6-month. Significant difference was detected between the 2 and 6-month.

Conclusions/Significance

Within the results of this study, the IP-CHA/implant complex might be able to achieve both bone reconstruction and implant stability.  相似文献   
80.
In vivo studies of the metastatic process are severely hampered by the fact that most human tumor cell lines derived from highly metastatic tumors fail to consistently metastasize in immunodeficient mice like nude mice. We describe a model system based on a highly immunodeficient double knockout mouse, Rag2?/?;Il2rg?/?, which lacks T, B and NK cell activity. In this model human metastatic HER-2? breast cancer cells displayed their full multiorgan metastatic potential, without the need for selections or additional manipulations of the system. Human HER-2? breast cancer cell lines MDA-MB-453 and BT-474 injected into Rag2?/?;Il2rg?/? mice faithfully reproduced human cancer dissemination, with multiple metastatic sites that included lungs, bones, brain, liver, ovaries, and others. Multiorgan metastatic spread was obtained both from local tumors, growing orthotopically or subcutaneously, and from cells injected intravenously. The problem of brain recurrencies is acutely felt in HER-2? breast cancer, because monoclonal antibodies against HER-2 penetrate poorly the blood-brain barrier. We studied whether a novel oral small molecule inhibitor of downstream PI3K, selected for its penetration of the blood-brain barrier, could affect multiorgan metastatic spread in Rag2?/?; Il2rg?/? mice. NVP-BKM120 effectively controlled metastatic growth in multiple organs, and resulted in a significant proportion of mice free from brain and bone metastases. Human HER-2? human breast cancer cells in Rag2?/?;Il2rg?/? mice faithfully reproduced the multiorgan metastatic pattern observed in patients, thus allowing the investigation of metastatic mechanisms and the preclinical study of novel antimetastatic agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号