首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   19篇
  264篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   9篇
  2014年   9篇
  2013年   11篇
  2012年   19篇
  2011年   17篇
  2010年   7篇
  2009年   16篇
  2008年   14篇
  2007年   14篇
  2006年   12篇
  2005年   13篇
  2004年   8篇
  2003年   16篇
  2002年   7篇
  2001年   7篇
  2000年   12篇
  1999年   6篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
31.

Background

Prenatal screening for Down Syndrome (DS) would benefit from an increased number of biomarkers to improve sensitivity and specificity. Improving sensitivity and specificity would decrease the need for potentially risky invasive diagnostic procedures.

Results

We have performed an in depth two-dimensional difference gel electrophoresis (2D DIGE) study to identify potential biomarkers. We have used maternal plasma samples obtained from first and second trimesters from mothers carrying DS affected fetuses compared with mothers carrying normal fetuses. Plasma samples were albumin/IgG depleted and expanded pH ranges of pH 4.5 - 5.5, pH 5.3 - 6.5 and pH 6 - 9 were used for two-dimensional gel electrophoresis (2DE). We found no differentially expressed proteins in the first trimester between the two groups. Significant up-regulation of ceruloplasmin, inter-alpha-trypsin inhibitor heavy chain H4, complement proteins C1s subcomponent, C4-A, C5, and C9 and kininogen 1 were detected in the second trimester in maternal plasma samples where a DS affected fetus was being carried. However, ceruloplasmin could not be confirmed as being consistently up-regulated in DS affected pregnancies by Western blotting.

Conclusions

Despite the in depth 2DE approach used in this study the results underline the deficiencies of gel-based proteomics for detection of plasma biomarkers. Gel-free approaches may be more productive to increase the number of plasma biomarkers for DS for non-invasive prenatal screening and diagnosis.  相似文献   
32.
Numerous studies have implicated the role of gross genomic rearrangements in male infertility, e.g., constitutional aneuploidy, translocations, inversions, Y chromosome deletions, elevated sperm disomy, and DNA damage. The primary purpose of this paper is to review male fertility studies associated with such abnormalities. In addition, we speculate whether altered nuclear organization, another chromosomal/whole genome-associated phenomenon, is also concomitant with male factor infertility. Nuclear organization has been studied in a range of systems and implicated in several diseases. For many applications the measurement of the relative position of chromosome territories is sufficient to determine patterns of nuclear organization. Initial evidence has suggested that, unlike in the more usual 'size-related' or 'gene density-related' models, mammalian (including human) sperm heads display a highly organized pattern including a chromocenter with the centromeres located to the center of the nucleus and the telomeres near the periphery. More recent evidence, however, suggests there may be size- and gene density-related components to nuclear organization in sperm. It seems reasonable to hypothesize therefore that alterations in this pattern may be associated with male factor infertility. A small handful of studies have addressed this issue; however, to date it remains an exciting avenue for future research with possible implications for diagnosis and therapy.  相似文献   
33.
The cytotoxic marine red algal metabolite thyrsiferol (1) was found to inhibit hypoxia-induced hypoxia-inducible factor-1 (HIF-1) activation in T47D human breast tumor cells (66% inhibition at 3 μM). Compound 1 also suppressed hypoxic induction of HIF-1 target genes (VEGF, GLUT-1) at the mRNA level, and displayed tumor cell line-selective time-dependent inhibition of cell viability/proliferation. Mechanistic studies revealed that 1 selectively suppressed mitochondrial respiration at Complex I (IC(50) 3 μM). Thyrsiferol represents a prototypical, structurally unique electron transport chain inhibitor. The apparent rotenone-like activity may contribute to the observed cytotoxicity of 1 and play an important role in Laurencia chemical defense.  相似文献   
34.
Genetic, biochemical, and animal model studies strongly suggest a central role for α-synuclein in the pathogenesis of Parkinson's disease. α-synuclein lacks a signal peptide sequence and has thus been considered a cytosolic protein. Recent data has suggested that the protein may be released from cells via a non-classical secretory pathway and may therefore exert paracrine effects in the extracellular environment. However, proof that α-synuclein is actually secreted into the brain extracellular space in vivo has not been obtained. We developed a novel highly sensitive ELISA in conjugation with an in vivo microdialysis technique to measure α-synuclein in brain interstitial fluid. We show for the first time that α-synuclein is readily detected in the interstitial fluid of both α-synuclein transgenic mice and human patients with traumatic brain injury. Our data suggest that α-synuclein is physiologically secreted by neurons in vivo. This interstitial fluid pool of the protein may have a role in the propagation of synuclein pathology and progression of Parkinson's disease.  相似文献   
35.
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyalkanoates (HAs) synthesised by numerous bacteria as intracellular carbon and energy storage compounds which accumulate as granules in the cytoplasm of the cells. The biosynthesis of PHAs, in the thermophilic bacterium T. thermophilus grown in a mineral medium supplemented with sodium gluconate as sole carbon source has been recently reported. Here, we report the purification at apparent homogeneity of a beta-ketoacyl-CoA thiolase from T. thermophilus, the first enzyme of the most common biosynthetic pathway for PHAs. B-Ketoacyl-CoA thiolase appeared as a single band of 45.5-kDa molecular mass on SDS/PAGE. The enzyme was purified 390-fold with 7% recovery. The native enzyme is a multimeric protein of a molecular mass of approximately of 182 kDa consisting of four identical subunits of 45.5 kDa, as identified by an in situ renaturation experiment on SDS-PAGE. The enzyme exhibited an optimal pH of approximately 8.0 and highest activity at 65 degrees C for both direction of the reaction. The thiolysis reaction showed a substrate inhibition at high concentrations; when one of the substrates (acetoacetyl CoA or CoA) is varied, while the concentrations of the second substrates (CoA or acetoacetyl CoA respectively) remain constant. The initial velocity kinetics showed a pattern of a family of parallel lines, which is in accordance with a ping-pong mechanism. beta-Ketothiolase had a relative low Km of 0.25 mM for acetyl-CoA and 11 microM and 25 microM for CoA and acetoacetyl-CoA, respectively. The enzyme was inhibited by treatment with 1 mM N-ethylmaleimide either in the presence or in the absence of 0.5 mM of acetyl-CoA suggesting that possibly a cysteine is located at/or near the active site of beta-ketothiolase.  相似文献   
36.
Friedreich's ataxia (FRDA) is caused by low expression of frataxin, a small mitochondrial protein. Studies with both yeast and mammals have suggested that decreased frataxin levels lead to elevated intramitochondrial concentrations of labile (chelatable) iron, and consequently to oxidative mitochondrial damage. Here, we used the mitochondrion-selective fluorescent iron indicator/chelator rhodamine B-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzylester (RPA) to determine the mitochondrial chelatable iron of FRDA patient lymphoblast and fibroblast cell lines, in comparison with age- and sex-matched control cells. No alteration in the concentration of mitochondrial chelatable iron could be observed in patient cells, despite strongly decreased frataxin levels. Uptake studies with (55)Fe-transferrin and iron loading with ferric ammonium citrate revealed no significant differences in transferrin receptor density and iron responsive protein/iron regulatory element binding activity between patients and controls. However, sensitivity to H(2)O(2) was significantly increased in patient cells, and H(2)O(2) toxicity could be completely inhibited by the ubiquitously distributing iron chelator 2,2'-dipyridyl, but not by the mitochondrion-selective chelator RPA. Our data strongly suggest that frataxin deficiency does not affect the mitochondrial labile iron pool or other parameters of cellular iron metabolism and suggest a decreased antioxidative defense against extramitochondrial iron-derived radicals in patient cells. These results challenge current concepts favoring the use of mitochondrion-specific iron chelators and antioxidants to treat FRDA.  相似文献   
37.
There is a need in autoimmune diseases to uncover the mechanisms involved in the natural resolution of inflammation. In this article, we demonstrate that granulocytic myeloid-derived suppressor cells (G-MDSCs) abundantly accumulate within the peripheral lymphoid compartments and target organs of mice with experimental autoimmune encephalomyelitis prior to disease remission. In vivo transfer of G-MDSCs ameliorated experimental autoimmune encephalomyelitis, significantly decreased demyelination, and delayed disease onset through inhibition of encephalitogenic Th1 and Th17 immune responses. Exposure of G-MDSCs to the autoimmune milieu led to up-regulation of the programmed death 1 ligand that was required for the G-MDSC-mediated suppressive function both in vitro and in vivo. Importantly, myeloid-derived suppressor cells were enriched in the periphery of subjects with active multiple sclerosis and suppressed the activation and proliferation of autologous CD4(+) T cells ex vivo. Collectively, this study revealed a pivotal role for myeloid-derived suppressor cells in the regulation of multiple sclerosis, which could be exploited for therapeutic purposes.  相似文献   
38.
Ischemia-reperfusion (I/R) injury is a leading cause of morbidity and mortality. A functional role for platelets in tissue damage after mesenteric I/R is largely unknown. The hypothesis that mesenteric I/R local and remote injury are platelet dependent was tested. Using a murine mesenteric I/R model, we demonstrate that platelets orchestrate remote lung tissue damage that follows mesenteric I/R injury and also contribute, albeit to a lesser degree, to local villi damage. While lung damage is delayed compared with villi damage, it increased over time and was characterized by accumulation of platelets in the pulmonary vasculature early, followed by alveolar capillaries and extravasation into the pulmonary space. Both villi and lung tissues displayed complement deposition. We demonstrate that villi and lung damage are reduced in mice made platelet deficient before I/R injury and that platelet transfusion into previously platelet-depleted mice before I/R increased both villi and lung tissue damage. Increased C3 deposition accompanied platelet sequestration in the lung, which was mostly absent in platelet-depleted mice. In contrast, C3 deposition was only minimally reduced on villi of platelet-depleted mice. Our findings position platelets alongside complement as a significant early upstream component that orchestrates remote lung tissue damage after mesenteric I/R and strongly suggest that reperfusion injury mitigating modalities should consider the contribution of platelets.  相似文献   
39.
Several innate and adaptive immune cell types participate in ischemia/reperfusion induced tissue injury. Amongst them, platelets have received little attention as contributors in the process of tissue damage after ischemia reperfusion (I/R) injury. It is currently unknown whether platelets participate through the immunologically important molecules including, CD40 and when activated, CD154 (CD40L), in the pathogenesis of I/R injury. We hypothesized that constitutive expression of CD40 and activation-induced expression of CD154 on platelets mediate local mesenteric and remote lung tissue damage after I/R injury. Wild type (WT; C57BL/6J), CD40 and CD154 deficient mice underwent mesenteric ischemia for 30 minutes followed by reperfusion for 3 hours. WT mice subjected to mesenteric I/R injury displayed both local intestinal and remote lung damage. In contrast, there was significantly less intestinal damage and no remote lung injury in CD40 and CD154 deficient mice when compared to WT mice. Platelet-depleted WT mice transfused with platelets from CD40 or CD154 deficient mice failed to reconstitute remote lung damage. In contrast, when CD40 or CD154 deficient mice were transfused with WT platelets lung tissue damage was re-established. Together, these findings suggest that multiple mechanisms are involved in local and remote tissue injury and also identify platelet-expressed CD40 and/or CD154 as mediators of remote tissue damage.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号