全文获取类型
收费全文 | 353篇 |
免费 | 18篇 |
专业分类
371篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 6篇 |
2021年 | 14篇 |
2020年 | 11篇 |
2019年 | 12篇 |
2018年 | 6篇 |
2017年 | 9篇 |
2016年 | 5篇 |
2015年 | 18篇 |
2014年 | 22篇 |
2013年 | 35篇 |
2012年 | 41篇 |
2011年 | 56篇 |
2010年 | 19篇 |
2009年 | 8篇 |
2008年 | 29篇 |
2007年 | 27篇 |
2006年 | 12篇 |
2005年 | 8篇 |
2004年 | 9篇 |
2003年 | 6篇 |
2002年 | 5篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1993年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有371条查询结果,搜索用时 0 毫秒
51.
52.
B Abt C Han C Scheuner M Lu A Lapidus M Nolan S Lucas N Hammon S Deshpande JF Cheng R Tapia LA Goodwin S Pitluck K Liolios I Pagani N Ivanova K Mavromatis N Mikhailova M Huntemann A Pati A Chen K Palaniappan M Land L Hauser EM Brambilla M Rohde S Spring S Gronow M Göker T Woyke J Bristow JA Eisen V Markowitz P Hugenholtz NC Kyrpides HP Klenk JC Detter 《Standards in genomic sciences》2012,6(2):194-209
Spirochaeta coccoides Dröge et al. 2006 is a member of the genus Spirochaeta Ehrenberg 1835, one of the oldest named genera within the Bacteria. S. coccoides is an obligately anaerobic, Gram-negative, non-motile, spherical bacterium that was isolated from the hindgut contents of the termite Neotermes castaneus. The species is of interest because it may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut. Here we provide a taxonomic re-evaluation for strain SPN1T, and based on physiological and genomic characteristics, we propose its reclassification as a novel species in the genus Sphaerochaeta, a recently published sister group of the Spirochaeta. The 2,227,296 bp long genome of strain SPN1T with its 1,866 protein-coding and 58 RNA genes is a part of the Genomic
Encyclopedia of
Bacteria and
Archaea project. 相似文献
53.
SER virus is a type 5 parainfluenza virus that does not exhibit syncytium formation, in contrast to most other paramyxoviruses. This property has been attributed, at least in part, to the presence of an extension of the cytoplasmic tail (CT) of the SER F protein, as truncations or mutations of this region resulted in enhanced fusion. In this study we used repeated passage to select for mutant SER viruses, which were found to be fusogenic. The mutant viruses replicated at levels comparable to or higher than the wild-type SER virus and caused plaque formation, in contrast to the wild-type virus which does not form plaques. The mutants differed strikingly in their plaque sizes. The F genes of mutant viruses were cloned and sequenced and shared some mutations, including a proline-to-leucine change at position 22 and an isoleucine-to-leucine substitution at position 191; other changes that were specific to each mutant were also found. The HN proteins of mutant viruses also showed mutations spanning the length of the protein whereas the M protein showed a consistent mutation, threonine to isoleucine, at position 129. The structure of the F protein was used to identify residues involved in the mutant phenotypes in terms of their location and proximity to heptad repeat domains. 相似文献
54.
Panagiotis Fotakis Ioanna Tiniakou Andreas K. Kateifides Christina Gkolfinopoulou Angeliki Chroni Efstratios Stratikos Vassilis I. Zannis Dimitris Kardassis 《Journal of lipid research》2013,54(12):3293-3302
We studied the significance of four hydrophobic residues within the 225–230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I−/− mice decreased plasma cholesterol, HDL cholesterol, and apoA-I levels. When expressed in apoA-I−/− × apoE−/− mice, approximately 40% of the mutant apoA-I as well as mouse apoA-IV and apoB-48 appeared in the VLDL/IDL/LDL. In both mouse models, the apoA-I mutant generated small spherical particles of pre-β- and α4-HDL mobility. Coexpression of the apoA-I mutant and LCAT increased and shifted the-HDL cholesterol peak toward lower densities, created normal αHDL subpopulations, and generated spherical-HDL particles. Biophysical analyses suggested that the apoA-I[225–230] mutations led to a more compact folding that may limit the conformational flexibility of the protein. The mutations also reduced the ability of apoA-I to promote ABCA1-mediated cholesterol efflux and to activate LCAT to 31% and 66%, respectively, of the WT control. Overall, the apoA-I[225–230] mutations inhibited the biogenesis of-HDL and led to the accumulation of immature pre-β- and α4-HDL particles, a phenotype that could be corrected by administration of LCAT. 相似文献
55.
Neutrophil CD64 expression and serum IL-8: sensitive early markers of severity and outcome in sepsis
Livaditi O Kotanidou A Psarra A Dimopoulou I Sotiropoulou C Augustatou K Papasteriades C Armaganidis A Roussos C Orfanos SE Douzinas EE 《Cytokine》2006,36(5-6):283-290
The aim of the present study was to investigate which biomarker/s reliably assess severity and mortality early in the sepsis process. In 47 critically-ill patients within the 24h of septic onset, Interleukins (IL)-8, -1beta, -6, -10, and -12p70, tumor necrosis factor-alpha (TNF-alpha), procalcitonin (PCT) and C-reactive protein (CRP) were measured in serum. Additionally, CD64 expression was measured in neutrophils. In early sepsis, neutrophil CD64 expression and IL-8 levels are the only biomarkers that increased with sepsis severity, differentiating disease stages: sepsis, severe sepsis and septic shock (p<0.001). The biomarkers that best evaluate the severity of sepsis (via APACHE II) were CD64, IL-8 and IL-6 (p<0.01), and the severity of organ failure (via SOFA) were CD64 and IL-8 (p<0.01). CD64 expression and IL-8 levels were associated with mortality within 28-days (OR=1.3, p=0.01 for CD64 and OR=1.26, p=0.024 for IL-8 by logistic regression analysis) and ROC curve analysis showed high sensitivity and specificity for predicting sepsis stages and the 28 day mortality. We conclude that there is an early increase of neutrophil CD64 expression and IL-8 levels during sepsis. Based on this single measurement it is possible to reliably assess the stage, detect the severity and predict the 28-day mortality of sepsis. 相似文献
56.
57.
Shubha Gururaja Rao Michal M. Janiszewski Edward Duca Bryce Nelson Kanishk Abhinav Ioanna Panagakou Sharron Vass Margarete M.S. Heck 《Nucleic acids research》2015,43(7):3546-3562
Identification of components essential to chromosome structure and behaviour remains a vibrant area of study. We have previously shown that invadolysin is essential in Drosophila, with roles in cell division and cell migration. Mitotic chromosomes are hypercondensed in length, but display an aberrant fuzzy appearance. We additionally demonstrated that in human cells, invadolysin is localized on the surface of lipid droplets, organelles that store not only triglycerides and sterols but also free histones H2A, H2Av and H2B. Is there a link between the storage of histones in lipid droplets and the aberrantly structured chromosomes of invadolysin mutants? We have identified a genetic interaction between invadolysin and nonstop, the de-ubiquitinating protease component of the SAGA (Spt-Ada-Gcn5-acetyltransferase) chromatin-remodelling complex. invadolysin and nonstop mutants exhibit phenotypic similarities in terms of chromosome structure in both diploid and polyploid cells. Furthermore, IX-141/not1 transheterozygous animals accumulate mono-ubiquitinated histone H2B (ubH2B) and histone H3 tri-methylated at lysine 4 (H3K4me3). Whole mount immunostaining of IX-141/not1 transheterozygous salivary glands revealed that ubH2B accumulates surprisingly in the cytoplasm, rather than the nucleus. Over-expression of the Bre1 ubiquitin ligase phenocopies the effects of mutating either the invadolysin or nonstop genes. Intriguingly, nonstop and mutants of other SAGA subunits (gcn5, ada2b and sgf11) all suppress an invadolysin-induced rough eye phenotype. We conclude that the abnormal chromosome phenotype of invadolysin mutants is likely the result of disrupting the histone modification cycle, as accumulation of ubH2B and H3K4me3 is observed. We further suggest that the mislocalization of ubH2B to the cytoplasm has additional consequences on downstream components essential for chromosome behaviour. We therefore propose that invadolysin plays a crucial role in chromosome organization via its interaction with the SAGA complex. 相似文献
58.
59.
I Anderson E Saunders A Lapidus M Nolan S Lucas H Tice TG Del Rio JF Cheng C Han R Tapia LA Goodwin S Pitluck K Liolios K Mavromatis I Pagani N Ivanova N Mikhailova A Pati A Chen K Palaniappan M Land L Hauser CD Jeffries YJ Chang EM Brambilla M Rohde S Spring M Göker JC Detter T Woyke J Bristow JA Eisen V Markowitz P Hugenholtz NC Kyrpides HP Klenk 《Standards in genomic sciences》2012,6(2):155-164
Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 相似文献
60.
ABSTRACT: BACKGROUND: The Respiration Activity Monitoring System (RAMOS) is an established device to measure on-line the oxygen transfer rate (OTR), thereby, yielding relevant information about metabolic activities of microorganisms and cells during shake flask fermentations. For very fast-growing microbes, however, the RAMOS technique provides too few data points for the OTR. Thus, this current study presents a new model based evaluation method for generating much more data points to enhance the information content and the precision of OTR measurements. RESULTS: In cultivations with E.coli BL21 pRSET eYFP-IL6, short diauxic and even triauxic metabolic activities were detected with much more detail compared to the conventional evaluation method. The decline of the OTR during the stop phases during oxygen limitations, which occur when the inlet and outlet valves of the RAMOS flask were closed for calibrating the oxygen sensor, were also detected. These declines reflected a reduced oxygen transfer due to the stop phases. In contrast to the conventional calculation method the new method was almost independent from the number of stop phases chosen in the experiments. CONCLUSIONS: This new model based evaluation method unveils new peaks of metabolic activity which otherwise would not have been resolved by the conventional RAMOS evaluation method. The new method yields substantially more OTR data points, thereby, enhancing the information content and the precision of the OTR measurements. Furthermore, oxygen limitations can be detected by a decrease of the OTR during the stop phases. 相似文献