首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   4篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   5篇
  2012年   8篇
  2011年   12篇
  2010年   8篇
  2009年   11篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1972年   2篇
排序方式: 共有134条查询结果,搜索用时 78 毫秒
91.
92.
93.
We surveyed nucleotide sequence variation at glucose dehydrogenase (Gld), in a region of low recombination on chromosome 3R, from a population sample of Drosophila simulans. The levels of nucleotide variation were surprisingly high. There was no departure from the expectation of a neutral model for the level of polymorphism, indicating no evidence of a selective sweep in this region. There was a significant deficiency of singleton polymorphisms according to the Fu and Li test, although Tajima and Hudson, Kreitman, and Aguade (HKA) tests do not provide evidence of a significant elevation of variation due to balancing selection. Genetic map data for the D. simulans third chromosome were used to calculate expected values of pi for Gld under a current model of background selection, varying the values for the parameter sh (selection coefficient against deleterious mutations). We show that the recombinational landscape of D. simulans is sufficiently different from that of D. melanogaster that we expect higher variation under the background selection model, even when effective population sizes are assumed to be equal. The data for Gld were tested against the predictions using computer simulations of the distribution of the number of segregating sites conditioned on pi. Background selection alone can explain our observations as long as sh is larger than 0.005 and species-level effective population size is assumed to be several- fold larger than in D. melanogaster. Alternatively, the deleterious mutation rate may be smaller in D. simulans, or balancing selection may be acting nearby, thereby reducing the effect of background selection.   相似文献   
94.
We study, from a quantitative point of view, the Hopf bifurcation in an ODE model of feedback control type introduced by Goodwin (1963) to describe the dynamics of end-product inhibition of gene activity. We formally prove that the exchange of linear stability of the positive equilibrium in the n-dimensional Goodwin system with equal reaction constants coexists with a Hopf bifurcation of nontrivial periodic solutions emanating from this equilibrium, without any further restriction on the dimension n 3 or on the Hill coefficient . The direction of the bifurcation, and the stability and the period of the bifurcating orbits are estimated by means of the algorithm proposed by Hassard et al. (1981).Supported by MURST 40/60%  相似文献   
95.
A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).  相似文献   
96.
To determine whether male- or female-biased mutation rates have affected the molecular evolution of Drosophila melanogaster and D. simulans, we calculated the male-to-female ratio of germline cell divisions ([symbol: see text]) from germline generation data and the male-to-female ratio of mutation rate ([symbol: see text]) by comparing chromosomal levels of nucleotide divergence. We found that the ratio of germline cell divisions changes from indicating a weak female bias to indicating a weak male bias as the age of reproduction increases. The range of [symbol: see text] values that we observed, however, does not lead us to expect much, if any, difference in mutation rate between the sexes. Silent and intron nucleotide divergence were compared between nine loci on the X chromosome and nine loci on the second and third chromosomes. The average levels of nucleotide divergence were not significantly different across the chromosomes, although both silent and intron sites show a trend toward slightly more divergence on the X. These results indicate a lack of sex- or chromosome-biased molecular evolution in D. melanogaster and D. simulans.   相似文献   
97.
Immunohistochemistry (IHC) is used to detect antibody-specific antigens in tissues; the results depend on the ability of the primary antibodies to bind to their antigens. Therefore, results depend on the quality of preservation of the specimen. Many investigators have overcome the deleterious effects of over-fixation on the binding of primary antibodies to specimen antigens using IHC, but if the specimen is under-fixed or fixation is delayed, false negative results could be obtained despite certified laboratory practices. Microtubule-associated protein 2 (MAP2) is an abundant microtubule-associate protein that participates in the outgrowth of neuronal processes and synaptic plasticity; it is localized primarily in cell bodies and dendrites of neurons. MAP2 immunolabeling has been reported to be absent in areas of the entorhinal cortex and hippocampus of Alzheimer’s disease brains that were co-localized with the dense-core type of amyloid plaques. It was hypothesized that the lack of MAP2 immunolabeling in these structures was due to the degradation of the MAP2 antigen by the neuronal proteases that were released as the neurons lysed leading to the formation of these plaques. Because MAP2 is sensitive to proteolysis, we hypothesized that changes in MAP2 immunolabeling may be correlated with the degree of fixation of central nervous system (CNS) tissues. We detected normal MAP2 immunolabeling in fixed rat brain tissues, but MAP2 immunolabeling was decreased or lost in unfixed and delayed-fixed rat brain tissues. By contrast, two ubiquitous CNS-specific markers, myelin basic protein and glial fibrillary acidic protein, were unaffected by the degree of fixation in the same tissues. Our observations suggest that preservation of various CNS-specific antigens differs with the degree of fixation and that the lack of MAP2 immunolabeling in the rat brain may indicate inadequate tissue fixation. We recommend applying MAP2 IHC for all CNS tissues as a pre-screen to assess the quality of the tissue preservation and to avoid potentially false negative IHC results.  相似文献   
98.
99.
The tumor suppressor protein p53 loses its function in more than 50% of human malignant tumors. Recent studies have suggested that mutant p53 can form aggregates that are related to loss-of-function effects, negative dominance and gain-of-function effects and cancers with a worsened prognosis. In recent years, several degenerative diseases have been shown to have prion-like properties similar to mammalian prion proteins (PrPs). However, whereas prion diseases are rare, the incidence of these neurodegenerative pathologies is high. Malignant tumors involving mutated forms of the tumor suppressor p53 protein seem to have similar substrata. The aggregation of the entire p53 protein and three functional domains of p53 into amyloid oligomers and fibrils has been demonstrated. Amyloid aggregates of mutant p53 have been detected in breast cancer and malignant skin tumors. Most p53 mutations related to cancer development are found in the DNA-binding domain (p53C), which has been experimentally shown to form amyloid oligomers and fibrils. Several computation programs have corroborated the predicted propensity of p53C to form aggregates, and some of these programs suggest that p53C is more likely to form aggregates than the globular domain of PrP. Overall, studies imply that mutant p53 exerts a dominant-negative regulatory effect on wild-type (WT) p53 and exerts gain-of-function effects when co-aggregating with other proteins such as p63, p73 and acetyltransferase p300. We review here the prion-like behavior of oncogenic p53 mutants that provides an explanation for their dominant-negative and gain-of-function properties and for the high metastatic potential of cancers bearing p53 mutations. The inhibition of the aggregation of p53 into oligomeric and fibrillar amyloids appears to be a promising target for therapeutic intervention in malignant tumor diseases.  相似文献   
100.
Ataxin-3 (AT3) is a deubiquitinating enzyme that triggers an inherited neurodegenerative disorder, spinocerebellar ataxia type 3, when its polyglutamine (polyQ) stretch close to the C-terminus exceeds a critical length. AT3 variants carrying the expanded polyQ are prone to associate with each other into amyloid toxic aggregates, which are responsible for neuronal death with ensuing neurodegeneration. We employed Saccharomyces cerevisiae as a eukaryotic cellular model to better clarify the mechanism by which AT3 triggers the disease. We expressed three variants: one normal (Q26), one expanded (Q85) and one truncated for a region lying from the beginning of its polyQ stretch to the end of the protein (291Δ). We found that the expression of the expanded form caused reduction in viability, accumulation of reactive oxygen species, imbalance of the antioxidant defense system and loss in cell membrane integrity, leading to necrotic death. The truncated variant also exerted a qualitatively similar, albeit milder, effect on cell growth and cytotoxicity, which points to the involvement of also non-polyQ regions in cytotoxicity. Guanidine hydrochloride, a well-known inhibitor of the chaperone Hsp104, almost completely restored wild-type survival rate of both 291Δ- and Q85-expressing strains. This suggests that AT3 aggregation and toxicity is mediated by prion forms of yeast proteins, as this chaperone plays a key role in their propagation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号