首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1148篇
  免费   76篇
  2023年   3篇
  2022年   4篇
  2021年   17篇
  2020年   5篇
  2019年   6篇
  2018年   21篇
  2017年   25篇
  2016年   31篇
  2015年   52篇
  2014年   54篇
  2013年   71篇
  2012年   80篇
  2011年   88篇
  2010年   50篇
  2009年   45篇
  2008年   77篇
  2007年   70篇
  2006年   55篇
  2005年   59篇
  2004年   47篇
  2003年   44篇
  2002年   55篇
  2001年   22篇
  2000年   30篇
  1999年   28篇
  1998年   6篇
  1997年   13篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1993年   3篇
  1992年   13篇
  1991年   11篇
  1990年   4篇
  1989年   17篇
  1988年   15篇
  1987年   12篇
  1986年   7篇
  1985年   9篇
  1984年   8篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1979年   5篇
  1978年   13篇
  1977年   4篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有1224条查询结果,搜索用时 31 毫秒
21.
Recent studies have suggested the importance of phosphatidylcholine (PC) metabolism in growth factor-stimulated cells. In these cells, PC is hydrolyzed not only by PC-specific phospholipase C but also by phospholipase D (PLD). In the present investigation, we show that the simple addition of PC-hydrolyzing PLD from Streptomyces chromofuscus to the culture medium of vascular smooth muscle cells elicits choline release into the medium accompanied by the formation of phosphatidic acid. In the presence of ethanol, this treatment elicits a formation of phosphatidylethanol (PEt) at the expense of phosphatidic acid. Furthermore, we show here that exogenous addition of S. chromofuscus PLD induces a marked DNA synthesis in quiescent vascular smooth muscle cells. This DNA synthesis induced by S. chromofuscus PLD is, like platelet-derived growth factor (PDGF)-elicited DNA synthesis, largely dependent on the presence of insulin. In addition, S. chromofuscus PLD-induced PEt formation and DNA synthesis were not affected by protein kinase C down-regulation, whereas PDGF-induced PEt formation and DNA synthesis were significantly inhibited. These observations strongly suggest that protein kinase-dependent activation of PLD is involved in mitogenic signal in PDGF-stimulated cells and that exogenously added PLD acts as a competence factor in the same way as PDGF.  相似文献   
22.
GM1-gangliosidosis is a genetic neurological disorder caused by mutations in the lysosomal acid beta-galactosidase gene. While its phenotypic expression is complex, it is usually classified as being of infantile, juvenile, or adult form, on the basis of age at onset, the rate of symptomatic progression, and severity of central nervous system involvement. We have analyzed the acid beta-galactosidase gene in 12 Japanese patients from nine families. The aim was to identify mutations in individual patients and then to examine possible correlation between the mutations and the clinical phenotypes. Northern blotting studies with a full-length human beta-galactosidase cDNA showed that the mRNA ranged from undetectable to substantially decreased in the infantile patients but was normal in quantity and size in all juvenile and adult patients. Four distinct missense mutations have been identified, each limited to the respective clinical forms within our small-size samples. In the infantile patient with decreased but detectable mRNA, a point mutation was found resulting in Arg49----Cys. In the infantile patient with nearly undetectable mRNA, mutation Arg457----Ter was identified. The mutation Arg201----Cys was found in all four of the juvenile patients, while all six adult patients were homozygous for the point mutation Ile51----Thr. The mutations found in the juvenile and adult patients alter restriction sites in the normal gene and thus are amendable to quick screening. The prediction that these mutations are responsible for the clinical disease was confirmed by no expression of the catalytic activity of the mutant proteins in the COS-I cell expression system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
23.
O2-inactivation of pyruvate:NADP+ oxidoreductase from mitochondria of Euglena gracilis was studied in vitro, and a mechanism which consists of two sequential stages was proposed. Initially, the enzyme is inactivated by the direct action of O2 in a process obeying second-order kinetics. Although the catalytic activity for pyruvate oxidation is lost by this initial inactivation, NADPH oxidation with artificial electron acceptors still occurs. Subsequently, a secondary, O2-independent inactivation occurs, rendering the enzyme completely inactive. Pyruvate stimulates the O2-inactivation while CoA and NADP+ protect the enzyme from O2. The O2-inactivation is accelerated by reduction of the enzyme with pyruvate and CoA. Reactivation of the O2-inactivated enzyme was studied in Ar by incubation with Fe2+ in the presence of some other reducing reagent such as dithiothreitol. The evidence obtained indicates that the partially inactivated enzyme, which retains catalytic activity for NADPH oxidation, can be reactivated, but the completely inactivated enzyme is not. When Euglena cells were exposed to 100% O2 the enzyme in the cells was inactivated by O2, but the rate was quite slow compared with that observed in vitro. The enzyme inactivated by O2 in the cells was almost completely reactivated in vitro by incubation with Fe2+ and other reducing reagents in Ar, suggesting that the secondary, O2-independent inactivation does not occur in situ. When the cells were returned to air, reactivation of the O2-inactivated enzyme in the cells began immediately. The enzyme, kept in isolated, intact mitochondria, was stable in air; however, the enzyme was inactivated by O2 when the mitochondria were incubated with a high concentration of pyruvate.  相似文献   
24.
Asparagine-linked sugar chains of sphingolipid activator protein 1 (SAP-1) purified from normal human liver and GM1 gangliosidosis (type 1) liver were comparatively investigated. Oligosaccharides released from the two SAP-1 samples by hydrazinolysis were fractionated by paper electrophoresis and by Aleuria aurantia lectin-Sepharose and Bio-Gel P-4 (under 400 mesh) column chromatography. Structures of oligosaccharides in each fraction were estimated from data on their effective molecular sizes, behavior on immobilized lectin columns with different carbohydrate-binding specificities, results of sequential digestion by exoglycosidases with different aglycon specificities, and methylation analysis. Sugar chains of SAP-1 purified from normal human liver and from GM1 gangliosidosis (type 1) liver were different from each other, although both of them were derived from complex-type sugar chains. The sugar chains of the former were the following eight degradation products from complex-type sugar chains by exoglycosidases in lysosomes: Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT, Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAcOT, Man alpha 1----6Man beta 1----4GlcNAc beta 1----4GlcNAcOT, Man alpha 1----6Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAcOT, Man beta 1----4GlcNAc beta 1----4GlcNAcOT, Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAcOT, GlcNAc beta 1----4GlcNAcOT, and GlcNAcOT. In contrast to these, the sugar chains of the latter were sialylated and nonsialylated mono- to tetraantennary complex-type sugar chains that were not fully degraded due to a metabolic defect in acid beta-galactosidase activity.  相似文献   
25.
26.
27.

Mixotrophy (MX, also called partial mycoheterotrophy) in plants is characterized by isotopic abundances that differ from those of autotrophs. Previous studies have evaluated mycoheterotrophy in MX plants associated with fungi of similar ecological characteristics, but little is known about the differences in the relative abundances of 13C and 15N in an orchid species that associates with several different mycobionts species. Since the chlorophyllous orchid Cremastra variabilis Nakai associates with various fungi with different ecologies, we hypothesized that it may change its relative abundances of 13C and 15N depending on the associated mycobionts. We investigated mycobiont diversity in the chlorophyllous orchid C. variabilis together with the relative abundance of 13C and 15N and morphological underground differentiation (presence or absence of a mycorhizome with fungal colonization). Rhizoctonias (Tulasnellaceae, Ceratobasidiaceae, Sebacinales) were detected as the main mycobionts. High differences in δ13C values (– 34.7? to?– 27.4 ‰) among individuals were found, in which the individuals associated with specific Psathyrellaceae showed significantly high relative abundance of 13C. In addition, Psathyrellaceae fungi were always detected on individuals with mycorhizomes. In the present study, MX orchid association with non-rhizoctonia saprobic fungi was confirmed, and the influence of mycobionts on morphological development and on relative abundance of 13C and 15N was discovered. Cremastra variabilis may increase opportunities to gain nutrients from diverse partners, in a bet-hedging plasticity that allows colonization of various environmental conditions.

  相似文献   
28.
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.  相似文献   
29.
30.
Musclin is a novel skeletal muscle-derived secretory factor found in the signal sequence trap of mouse skeletal muscle cDNAs. Musclin possesses a region homologous to the natriuretic peptide family. Thus, musclin is found to bind with the natriuretic peptide clearance receptors. However, the role of musclin in vascular regulation remains unclear. In this study, we aim to investigate the direct effect of musclin on vascular tone and to analyze its role in hypertension using the spontaneously hypertensive rats (SHR). In aortic strips isolated from SHR, musclin induced contractions in a dose-dependent manner. We found that the musclin-induced vasoconstriction was more marked in SHR than in normal rats (WKY). Moreover, this contraction was reduced by blockade of natriuretic peptide receptor C using the ab14355 antibody. Therefore, mediation of the natriuretic peptide receptor in musclin-induced vasoconstriction can be considered. In addition, similar to the natriuretic peptide receptor, expression of the musclin gene in blood vessels was higher in SHR than in WKY. Injection of musclin markedly increased the blood pressure in rats that can be inhibited by anti-musclin antibodies. Musclin-induced vasoconstriction was more pronounced in SHR than in WKY as in its expression. Taken together, these results suggest that musclin is involved in blood pressure regulation. The higher expression of musclin in hypertension indicates that musclin could be used as a new target for the treatment of hypertension in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号