全文获取类型
收费全文 | 97篇 |
免费 | 4篇 |
专业分类
101篇 |
出版年
2023年 | 2篇 |
2019年 | 3篇 |
2017年 | 1篇 |
2016年 | 3篇 |
2015年 | 1篇 |
2014年 | 1篇 |
2013年 | 3篇 |
2012年 | 3篇 |
2011年 | 6篇 |
2010年 | 10篇 |
2009年 | 5篇 |
2008年 | 5篇 |
2007年 | 4篇 |
2006年 | 3篇 |
2005年 | 6篇 |
2004年 | 3篇 |
2003年 | 5篇 |
2002年 | 1篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 5篇 |
1996年 | 5篇 |
1995年 | 1篇 |
1994年 | 5篇 |
1992年 | 2篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有101条查询结果,搜索用时 0 毫秒
71.
Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture 总被引:59,自引:0,他引:59
Amit M Carpenter MK Inokuma MS Chiu CP Harris CP Waknitz MA Itskovitz-Eldor J Thomson JA 《Developmental biology》2000,227(2):271-278
Embryonic stem (ES) cell lines derived from human blastocysts have the developmental potential to form derivatives of all three embryonic germ layers even after prolonged culture. Here we describe the clonal derivation of two human ES cell lines, H9.1 and H9.2. At the time of the clonal derivation of the H9.1 and H9.2 ES cell lines, the parental ES cell line, H9, had already been continuously cultured for 6 months. After an additional 8 months of culture, H9.1 and H9.2 ES cell lines continued to: (1) actively proliferate, (2) express high levels of telomerase, and (3) retain normal karyotypes. Telomere lengths, while somewhat variable, were maintained between 8 and 12 kb in high-passage H9.1 and H9.2 cells. High-passage H9.1 and H9.2 cells both formed teratomas in SCID-beige mice that included differentiated derivatives of all three embryonic germ layers. These results demonstrate the pluripotency of single human ES cells, the maintenance of pluripotency during an extended period of culture, and the long-term self-renewing properties of cultured human ES cells. The remarkable developmental potential, proliferative capacity, and karyotypic stability of human ES cells distinguish them from adult cells. 相似文献
72.
M. E. MARUSHCHAK A. PITKÄMÄKI H. KOPONEN C. BIASI M. SEPPÄLÄ P. J. MARTIKAINEN 《Global Change Biology》2011,17(8):2601-2614
Recent findings on large nitrous oxide (N2O) emissions from permafrost peatlands have shown that tundra soils can support high N2O release, which is on the contrary to what was thought previously. However, field data on this topic have been very limited, and the spatial and temporal extent of the phenomenon has not been known. To address this question, we studied N2O dynamics in two types of subarctic permafrost peatlands, a peat plateau in Russia and three palsa mires in Finland, including also adjacent upland soils. The peatlands studied have surfaces that are uplifted by frost (palsas and peat plateaus) and partly unvegetated as a result of wind erosion and frost action. Unvegetated peat surfaces with high N2O emissions were found from all the studied peatlands. Very high N2O emissions were measured from peat circles at the Russian site (1.40±0.15 g N2O m?2 yr?1). Elevated, sparsely vegetated peat mounds at the same site had significantly lower N2O release. The N2O emissions from bare palsa surfaces in Northern Finland were highly variable but reached high rates, similar to those measured from the peat circles. All the vegetated soils studied had negligible N2O release. At the bare peat surfaces, the large N2O emissions were supported by the absence of plant N uptake, the low C : N ratio of the peat, the relatively high gross N mineralization rate and favourable moisture content, together increasing availability of mineral N for N2O production. We hypothesize that frost heave is crucial for high N2O emissions, since it lifts the peat above the water table, increasing oxygen availability and making it vulnerable to the the physical processes that may remove the vegetation cover. In the future, permafrost thawing may change the distribution of wet and dry surfaces in permafrost peatlands, which will affect N2O emissions. 相似文献
73.
74.
75.
ZSOLT PÉNZES GEORGE MELIKA ZOLTÁN BOZSÓKI PÉTER BIHARI ISTVÁN MIKÓ MAJID TAVAKOLI JULI PUJADE‐VILLAR BALÁZS FEHÉR DÁVID FÜLÖP KRISZTIÁN SZABÓ MIKLÓS BOZSÓ BOTOND SIPOS KÁLMÁN SOMOGYI GRAHAM N. STONE 《Systematic Entomology》2009,34(4):688-711
Several unanswered questions remain regarding the taxonomy and phylogeny of inquiline gallwasps (Cynipidae: Synergini), obligate inhabitants of plant galls induced primarily by other gallwasps (Cynipidae: Cynipini and Diplolepidini). Here we use morphological and molecular data to revise the inquiline genus Synophrus, members of which are notable for extensively modifying the structure of galls induced by oak gallwasp hosts on oaks in the section Cerris of Quercus subgenus Quercus in the Western Palaearctic. Previous taxonomic treatments have recognized three Western Palaearctic species of Synophrus: S. pilulae, S. politus and S. olivieri. Our results support the establishment of four additional Western Palaearctic species: Synophrus hungaricus sp.n. , S. libani sp.n. , S. syriacus sp.n. and S. hispanicus sp.n. We describe and diagnose these new taxa, analyse their phylogenetic relationships, and show that Synophrus inquilines are able to impose their own gall phenotypes on those of their hosts. We provide an updated key to Synophrus. 相似文献
76.
77.
DAVE CURRIE JARI VALKAMA ÅKE BERG MARTIN BOSCHERT KAI NORRDAHL MIKKO HÄNNINEN ERKKI KORPIMÄKI VILLE PÖYRI OSSI HEMMINKI 《Ibis》2001,143(3):642-650
The reasons for female desertion of offspring and the evolution of predominantly male care among monogamous bird species are not clearly understood. We studied parental effort during the incubation and chick rearing periods in the Eurasian Curlew Numenius arquata in western Finland, and compared timing of brood desertion with other populations in Europe. Males and females contributed equally to incubation and showed no differences in the intensity of mobbing behaviour towards a potential nest predator (stuffed crow) shortly after hatching. However, females deserted their offspring approximately halfway through the brooding period ( c. 16 d after hatching), while males remained with chicks until independence ( c. 35 d). Females with late-laid clutches deserted their offspring sooner after hatching than those with clutches produced earlier in the season. Curlew females deserted younger chicks in northeast Europe, where laying dates were later, breeding seasons shorter and migration distances were longer, than in western and central Europe. We suggest that the most likely reasons for offspring desertion by females may be associated with increased female survivorship and maintenance of pairbond between years. 相似文献
78.
79.
80.
Gregory G. Y. Guirimand Takahiro Bamba Mami Matsuda Kentaro Inokuma Kenta Morita Yuki Kitada Yuma Kobayashi Takahiro Yukawa Kengo Sasaki Chiaki Ogino Tomohisa Hasunuma Akihiko Kondo 《Biotechnology journal》2019,14(9)
Xylitol is a highly valuable commodity chemical used extensively in the food and pharmaceutical industries. The production of xylitol from d ‐xylose involves a costly and polluting catalytic hydrogenation process. Biotechnological production from lignocellulosic biomass by micro‐organisms like yeasts is a promising option. In this study, xylitol is produced from lignocellulosic biomass by a recombinant strain of Saccharomyces cerevisiae (S. cerevisiae) (YPH499‐SsXR‐AaBGL) expressing cytosolic xylose reductase (Scheffersomyces stipitis xylose reductase [SsXR]), along with a β‐d ‐glucosidase (Aspergillus aculeatus β‐glucosidase 1 [AaBGL]) displayed on the cell surface. The simultaneous cofermentation of cellobiose/xylose by this strain leads to an ≈2.5‐fold increase in Yxylitol/xylose (=0.54) compared to the use of a glucose/xylose mixture as a substrate. Further improvement in the xylose uptake by the cell is achieved by a broad evaluation of several homologous and heterologous transporters. Homologous maltose transporter (ScMAL11) shows the best performance in xylose transport and is used to generate the strain YPH499‐XR‐ScMAL11‐BGL with a significantly improved xylitol production capacity from cellobiose/xylose coutilization. This report constitutes a promising proof of concept to further scale up the biorefinery industrial production of xylitol from lignocellulose by combining cell surface and metabolic engineering in S. cerevisiae. 相似文献