全文获取类型
收费全文 | 711篇 |
免费 | 56篇 |
专业分类
767篇 |
出版年
2023年 | 3篇 |
2022年 | 7篇 |
2021年 | 19篇 |
2020年 | 8篇 |
2019年 | 8篇 |
2018年 | 17篇 |
2017年 | 7篇 |
2016年 | 21篇 |
2015年 | 34篇 |
2014年 | 36篇 |
2013年 | 45篇 |
2012年 | 52篇 |
2011年 | 59篇 |
2010年 | 38篇 |
2009年 | 34篇 |
2008年 | 51篇 |
2007年 | 57篇 |
2006年 | 53篇 |
2005年 | 52篇 |
2004年 | 56篇 |
2003年 | 36篇 |
2002年 | 37篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 6篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1985年 | 2篇 |
1982年 | 1篇 |
1975年 | 1篇 |
1967年 | 1篇 |
1956年 | 1篇 |
排序方式: 共有767条查询结果,搜索用时 63 毫秒
21.
This paper is an overview of the theoretical and experimental studies performed in our laboratory to answer the question whether there exist conditions where the hypothetical mechanism of the localized coupling of respiration and phosphorylation postulated by R. Williams in 1961 operates. These studies were undertaken to verify the earlier suggestion that mitochondria may exist in two structural and functional states. Correspondingly, there are two operation modes of oxidative phosphorylation, one of which corresponds to the Williams' mechanism of localized coupling and the other, to the Mitchell's mechanism of delocalized coupling. The paper considers the principle of the energy conservation of oxidative reactions in mitochondrial membranes in the form of the thermodynamic potential of hydrogen ions (Deltamusol) lacking, in part, the solvation shell. We present experimental evidence for the existence of the mechanism of localized coupling and describes the conditions favorable for its implementation. The experiments described in this paper show that the aforementioned models for proton coupling are not necessarily alternative. A conclusion is made that, depending on the particular conditions, either localized or delocalized coupling mechanisms of oxidative phosphorylation may come into operation. 相似文献
22.
23.
Gelina S. Kopeina Evgeniia A. Prokhorova Inna N. Lavrik Boris Zhivotovsky 《Cell proliferation》2018,51(5)
Apoptosis is a mode of regulated cell death that is indispensable for the morphogenesis, development and homeostasis of multicellular organisms. Caspases are cysteine‐dependent aspartate‐specific proteases, which function as initiators and executors of apoptosis. Caspases are cytosolic proteins that can cleave substrates located in different intracellular compartments during apoptosis. Many years ago, the involvement of caspases in the regulation of nuclear changes, a hallmark of apoptosis, was documented. Accumulated data suggest that apoptosis‐associated alterations in nucleocytoplasmic transport are also linked to caspase activity. Here, we aim to discuss the current state of knowledge regarding this process. Particular attention will be focused on caspase nuclear entry and their functions in the demolition of the nucleus upon apoptotic stimuli. 相似文献
24.
Inna Leykin 《The journal of the Royal Anthropological Institute》2020,26(1):86-104
The article explores a series of professional development seminars for state bureaucrats in the context of the moral panic over Russia's ‘demographic crisis’. It follows the vernacularization of social knowledge for state bureaucrats – a central practice that marks these pedagogical engagements. The article explores this practice's potentialities and limitations for effectively communicating social knowledge to administrative audiences. It grounds itself in the theoretical discussions of expertise and demonstrates how vernacularizing social knowledge for post-Soviet statecraft shapes the social and political meanings of Russia's demographic crisis, investing state policies and discourses with authority. 相似文献
25.
Miroshnyk I Mirza S Zorky PM Heinämäki J Yli-Kauhaluoma J Yliruusi J 《Bioorganic & medicinal chemistry》2008,16(1):232-239
Quantitative analysis of the molecular conformations of the 14-membered macrolide antibiotics erythromycin A and B, clarithromycin, and roxithromycin in the solid state was performed. While the erythronolide macrocycle adopts a very similar folded-out conformation in all the macrolides studied, the proximity of the monosaccharide moieties, L-cladinose and D-desosamine, to each other is demonstrated to be the distinctive feature of their molecular conformations, based on atom-atom interaction energy analysis. More surprisingly, the common features in the relative orientation of the monosaccharide moieties (in terms of non-bonded atom-atom interactions) were revealed between the 14- and 15-membered (azithromycin) macrolide antibiotics. Herein we report on the details of the spatial arrangement of the monosaccharide moieties in these structurally related drug molecules and their influence on the biopharmaceutical properties of erythromycin derivatives. 相似文献
26.
Daniil M. Prigozhin Inna V. Krieger John P. Huizar Daniela Mavrici Geoffrey S. Waldo Li-Wei Hung James C. Sacchettini Thomas C. Terwilliger Tom Alber 《PloS one》2014,9(12)
Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis. 相似文献
27.
Sharon Sima Lander Sergiy Chornyy Hazem Safory Amit Gross Herman Wolosker Inna Gaisler‐Salomon 《Genes, Brain & Behavior》2020,19(6)
Glutamate Dehydrogenase 1 (GDH), encoded by the Glud1 gene in rodents, is a mitochondrial enzyme critical for maintaining glutamate homeostasis at the tripartite synapse. Our previous studies indicate that the hippocampus may be particularly vulnerable to GDH deficiency in central nervous system (CNS). Here, we first asked whether mice with a homozygous deletion of Glud1 in CNS (CNS‐Glud1 ?/? mice) express different levels of glutamate in hippocampus, and found elevated glutamate as well as glutamine in dorsal and ventral hippocampus, and increased glutamine in medial prefrontal cortex (mPFC). l ‐serine and d ‐serine, which contribute to glutamate homeostasis and NMDA receptor function, are increased in ventral but not dorsal hippocampus, and in mPFC. Protein expression levels of the GABA synthesis enzyme glutamate decarboxylase (GAD) GAD67 were decreased in the ventral hippocampus as well. Behavioral analysis revealed deficits in visual, spatial and social novelty recognition abilities, which require intact hippocampal‐prefrontal cortex circuitry. Finally, hippocampus‐dependent contextual fear retrieval was deficient in CNS‐Glud1 ?/? mice, and c‐Fos expression (indicative of neuronal activation) in the CA1 pyramidal layer was reduced immediately following this task. These data point to hippocampal subregion‐dependent disruption in glutamate homeostasis and excitatory/inhibitory balance, and to behavioral deficits that support a decline in hippocampal‐prefrontal cortex connectivity. Together with our previous data, these findings also point to different patterns of basal and activity‐induced hippocampal abnormalities in these mice. In sum, GDH contributes to healthy hippocampal and PFC function; disturbed GDH function is relevant to several psychiatric and neurological disorders. 相似文献
28.
Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae,Chlorophyta) 总被引:2,自引:0,他引:2
The freshwater green microalga Parietochloris incisa is the richest known plant source of the polyunsaturated fatty acid (PUFA), arachidonic acid (20:4omega6, AA). While many microalgae accumulate triacylglycerols (TAG) in the stationary phase or under certain stress conditions, these TAG are generally made of saturated and monounsaturated fatty acids. In contrast, most cellular AA of P. incisa resides in TAG. Using various inhibitors, we have attempted to find out if the induction of the biosynthesis of AA and the accumulation of TAG are codependent. Salicylhydroxamic acid (SHAM) affected a growth reduction that was accompanied with an increase in the content of TAG from 3.0 to 6.2% of dry weight. The proportion of 18:1 increased sharply in all lipids while that of 18:2 and its down stream products, 18:3omega6, 20:3omega6 and AA, decreased, indicating an inhibition of the Delta12 desaturation of 18:1. Treatment with the herbicide SAN 9785 significantly reduced the proportion of TAG. However, the proportion of AA in TAG, as well as in the polar lipids, increased. These findings indicate that while there is a preference for AA as a building block of TAG, the latter can be produced using other fatty acids, when the production of AA is inhibited. On the other hand, inhibiting TAG construction did not affect the production of AA. In order to elucidate the possible role of AA in TAG we have labeled exponential cultures of P. incisa kept at 25 degrees C with [1-14C]arachidonic acid and cultivated the cultures for another 12 h at 25, 12 or 4 degrees C. At the lower temperatures, labeled AA was transferred from TAG to polar lipids, indicating that TAG of P. incisa may have a role as a depot of AA that can be incorporated into the membranes, enabling the organism to quickly respond to low temperature-induced stress. 相似文献
29.
Reigle KL Di Lullo G Turner KR Last JA Chervoneva I Birk DE Funderburgh JL Elrod E Germann MW Surber C Sanderson RD San Antonio JD 《Journal of cellular biochemistry》2008,104(5):1684-1698
Non-enzymatic glycation of type I collagen occurs in aging and diabetes, and may affect collagen solubility, charge, polymerization, and intermolecular interactions. Proteoglycans(1) (PGs) bind type I collagen and are proposed to regulate fibril assembly, function, and cell-collagen interactions. Moreover, on the collagen fibril a keratan sulfate (KS) PG binding region overlaps with preferred collagen glycation sites. Thus, we examined the effect of collagen modified by simple glycation on PG-collagen interactions. By affinity coelectrophoresis (ACE), we found reduced affinities of heparin and KSPGs for glycated but not normal collagen, whereas the dermatan sulfate (DS)PGs decorin and biglycan bound similarly to both, and that the affinity of heparin for normal collagen decreased with increasing pH. Circular dichroism (CD) spectroscopy revealed normal and glycated collagens to assume triple helical conformations, but heparin addition caused precipitation and decreased triple helical content-effects that were more marked with glycated collagen. A spectrophotometric assay revealed slower polymerization of glycated collagen. However, ultrastructural analyses indicated that fibrils assembled from normal and glycated collagen exhibited normal periodicity, and had similar structures and comparable diameter distributions. B-cells expressing the cell surface heparan sulfate PG syndecan-1 adhered well to normal but not glycated collagen, and endothelial cell migration was delayed on glycated collagen. We speculate that glycation diminishes the electrostatic interactions between type I collagen and PGs, and may interfere with core protein-collagen associations for KSPGs but not DSPGs. Therefore in vivo, collagen glycation may weaken PG-collagen interactions, thereby disrupting matrix integrity and cell-collagen interactions, adhesion, and migration. 相似文献
30.
Omera B. Matoo Anna V. Ivanina Claus Ullstad Elia Beniash Inna M. Sokolova 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2013,164(4):545-553
Marine bivalves such as the hard shell clams Mercenaria mercenaria and eastern oysters Crassostrea virginica are affected by multiple stressors, including fluctuations in temperature and CO2 levels in estuaries, and these stresses are expected to be exacerbated by ongoing global climate change. Hypercapnia (elevated CO2 levels) and temperature stress can affect survival, growth and development of marine bivalves, but the cellular mechanisms of these effects are not yet fully understood. In this study, we investigated whether oxidative stress is implicated in cellular responses to elevated temperature and CO2 levels in marine bivalves. We measured the whole-organism standard metabolic rate (SMR), total antioxidant capacity (TAOC), and levels of oxidative stress biomarkers in the muscle tissues of clams and oysters exposed to different temperatures (22 and 27 °C) and CO2 levels (the present day conditions of ~ 400 ppm CO2 and 800 ppm CO2 predicted by a consensus business-as-usual IPCC emission scenario for the year 2100). SMR was significantly higher and the antioxidant capacity was lower in oysters than in clams. Aerobic metabolism was largely temperature-independent in these two species in the studied temperature range (22–27 °C). However, the combined exposure to elevated temperature and hypercapnia led to elevated SMR in clams indicating elevated costs of basal maintenance. No persistent oxidative stress signal (measured by the levels of protein carbonyls, and protein conjugates with malondialdehyde and 4-hydroxynonenal) was observed during the long-term exposure to moderate warming (+ 5 °C) and hypercapnia (~ 800 ppm CO2). This indicates that long-term exposure to moderately elevated CO2 and temperature minimally affects the cellular redox status in these bivalve species and that the earlier observed negative physiological effects of elevated CO2 and temperature must be explained by other cellular mechanisms. 相似文献