首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   708篇
  免费   60篇
  2023年   3篇
  2022年   4篇
  2021年   19篇
  2020年   8篇
  2019年   8篇
  2018年   17篇
  2017年   7篇
  2016年   21篇
  2015年   34篇
  2014年   36篇
  2013年   45篇
  2012年   52篇
  2011年   59篇
  2010年   38篇
  2009年   34篇
  2008年   51篇
  2007年   57篇
  2006年   53篇
  2005年   52篇
  2004年   56篇
  2003年   36篇
  2002年   37篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1985年   2篇
  1982年   1篇
  1975年   1篇
  1967年   1篇
  1956年   1篇
排序方式: 共有768条查询结果,搜索用时 15 毫秒
711.
IQGAP1, an essential scaffolding protein, forms a complex with the hyaluronan receptor CD44. In this study, we have examined the importance of IQGAP1 for hyaluronan-mediated fibroblast migration and proliferation. Hyaluronan induced formation of F-actin fibers and focal adhesions, which was dependent on IQGAP1. IQGAP1 was required for hyaluronan- but not for platelet-derived growth factor (PDGF)-BB-induced cell migration, and was required for both hyaluronan- and PDGF-BB-mediated fibroblast proliferation, but not for proliferation induced by 10% fetal bovine serum. Depletion of IQGAP1 suppressed hyaluronan-induced activation of Rac1 and enhanced the activation of RhoA. Taken together, these findings indicate important roles for IQGAP1 in hyaluronan-stimulated migration and proliferation of fibroblasts.  相似文献   
712.
Bevacizumab-resistant tumor vessels were characterized by an increased vessel diameter and normalization of vascular structures by the recruitment of mature pericytes and smooth muscle cells. Here, we analyzed human liver metastases which were taken at clinical relapse in patients with colorectal adenocarcinoma treated with anti-angiogenic therapy using the humanized monoclonal anti-VEGF bevacizumab. Tumor vessels which are resistant to anti-VEGF therapy are increased in size and characterized by a normalization of the vascular bed. These results were confirmed using NOD SCID mice as animal model and xenograft transplantation of human PC-3 prostate carcinoma cells in combination with bevacizumab treatment. Our results confirmed that anti-angiogenic therapy results in enhanced vascular remodeling by vascular stabilization. This process is apparently accompanied by enhanced necrosis of tumor tissue. These processes interfere with the efficacy of anti-angiogenic therapy because of reduced susceptibility of stabilized vessels by this therapy. These results demonstrate the importance for the development of second generation anti-angiogenic combination therapy concepts to rule out the balance between vascular stabilization followed by a possible de-stabilization making the remained vessels susceptible to a second wave of anti-angiogenic therapy.  相似文献   
713.
Seeds in the seed bank experience diurnal cycles of imbibition followed by complete dehydration. These conditions pose a challenge to the regulation of germination. The effect of recurring hydration-dehydration (Hy-Dh) cycles were tested on seeds from four Arabidopsis thaliana accessions [Col-0, Cvi, C24 and Ler]. Diurnal Hy-Dh cycles had a detrimental effect on the germination rate and on the final percentage of germination in Col-0, Cvi and C24 ecotypes, but not in the Ler ecotype, which showed improved vigor following the treatments. Membrane permeability measured by ion conductivity was generally increased following each Hy-Dh cycle and was correlated with changes in the redox status represented by the GSSG/GSH (oxidized/reduced glutathione) ratio. Among the ecotypes, Col-0 seeds displayed the highest membrane permeability, whilst Ler was characterized by the greatest increase in electrical conductivity following Hy-Dh cycles. Following Dh 2 and Dh 3, the respiratory activity of Ler seeds significantly increased, in contrast to the other ecotypes, indicative of a dramatic shift in metabolism. These differences were associated with accession-specific content and patterns of change of (i) cell wall-related laminaribiose and mannose; (ii) fatty acid composition, specifically of the unsaturated oleic acid and α-linoleic acid; and (iii) asparagine, ornithine and the related polyamine putrescine. Furthermore, in the Ler ecotype the content of the tricarboxylic acid (TCA) cycle intermediates fumarate, succinate and malate increased in response to dehydration, in contrast to a decrease in the other three ecotypes. These findings provide a link between seed respiration, energy metabolism, fatty acid β-oxidation, nitrogen mobilization and membrane permeability and the improved germination of Ler seeds following Hy-Dh cycles.  相似文献   
714.
715.
A series of new carbocyclic uracil derivatives were synthesized and evaluated as potential antituberculosis agents. Racemic 1-[4′-hydroxy-2′-cyclopenten-1′-yl]-5-tetradecynyluracil completely inhibited the growth of Mycobacterium tuberculosis H37Rv in vitro at a concentration of 10 μg/ml. Individual (+) and (?) isomers of the above uracil derivative were isolated and showed the same level of activity against two strains of Mycobacterium tuberculosis: laboratory sensitive (H37Rv) and clinical resistant to five top antituberculosis drugs (MS-115).  相似文献   
716.
717.
718.
Genetic polymorphisms are known to affect responses to both viral infection and vaccination. Our previous work has described genetic polymorphisms significantly associated with variations in immune response to rubella vaccine from multiple gene families with known immune function, including HLA, cytokine and cytokine receptor genes, and in genes controlling innate and adaptive immunity. In this study, we assessed cellular immune responses (IFNγ and IL-6) in a cohort of healthy younger individuals and performed genome-wide SNP analysis on these same individuals. Here, we report the first genome-wide association study focused on immune responses following rubella vaccination. Our results indicate that rs16928280 in protein tyrosine phosphatase delta (PTPRD) and a collection of SNPs in ACO1 (encoding an iron regulatory protein) are associated with interindividual variations in IFNγ response to rubella virus stimulation. In contrast, we did not identify any significant genetic associations with rubella-specific IL-6 response. These genetic regions may influence rubella vaccine-induced IFNγ responses and warrant further studies in additional cohorts in order to confirm these findings.  相似文献   
719.
The evolution of cancer therapy into complex regimens with multiple drugs requires novel approaches for the development and evaluation of companion biomarkers. Liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) is a versatile platform for biomarker measurement. In this study, we describe the development and use of the LC-MRM platform to study the adaptive signaling responses of melanoma cells to inhibitors of HSP90 (XL888) and MEK (AZD6244). XL888 had good anti-tumor activity against NRAS mutant melanoma cell lines as well as BRAF mutant cells with acquired resistance to BRAF inhibitors both in vitro and in vivo. LC-MRM analysis showed HSP90 inhibition to be associated with decreased expression of multiple receptor tyrosine kinases, modules in the PI3K/AKT/mammalian target of rapamycin pathway, and the MAPK/CDK4 signaling axis in NRAS mutant melanoma cell lines and the inhibition of PI3K/AKT signaling in BRAF mutant melanoma xenografts with acquired vemurafenib resistance. The LC-MRM approach targeting more than 80 cancer signaling proteins was highly sensitive and could be applied to fine needle aspirates from xenografts and clinical melanoma specimens (using 50 μg of total protein). We further showed MEK inhibition to be associated with signaling through the NFκB and WNT signaling pathways, as well as increased receptor tyrosine kinase expression and activation. Validation studies identified PDGF receptor β signaling as a potential escape mechanism from MEK inhibition, which could be overcome through combined use of AZD6244 and the PDGF receptor inhibitor, crenolanib. Together, our studies show LC-MRM to have unique value as a platform for the systems level understanding of the molecular mechanisms of drug response and therapeutic escape. This work provides the proof-of-principle for the future development of LC-MRM assays for monitoring drug responses in the clinic.Despite excitement about the development of targeted therapy strategies for cancer, few cures have been achieved. In patients with BRAF mutant melanoma, treatment with small molecule BRAF inhibitors typically follows a course of response and tumor shrinkage followed by eventual relapse and resistance (mean progression-free survival is ∼5.3 months) (1). Resistance to BRAF inhibitors is typically accompanied by reactivation of the MAPK signaling pathway, an effect mediated through activating mutations in NRAS and MEK1/2, genomic amplification of BRAF, increased expression of CRAF and Cot, and the acquisition of BRAF splice-form mutants (25). There is also evidence that increased PI3K/AKT signaling, resulting from the genetic inactivation of PTEN and NF1 and increased receptor tyrosine kinase (RTK)1 signaling, may be involved in acquired BRAF inhibitor resistance (57). Many of the signaling proteins implicated in the escape from BRAF inhibitor therapy are clients of heat shock protein (HSP)-90 (8). Preclinical evidence now indicates that HSP90 inhibitors can overcome acquired and intrinsic BRAF inhibitor resistance, and clinical trials have been initiated to evaluate the BRAF/HSP90 combination in newly diagnosed patients (8, 9).Although targeted therapy strategies have been promising in BRAF mutant melanoma, few options currently exist for the 15–20% of melanoma patients whose tumors harbor activating NRAS mutations (10). Although there is some evidence that MEK inhibitors have activity in NRAS mutant melanoma patients, responses tend to be short-lived (mean progression-free survival ∼3 months) and resistance is nearly inevitable (11). Our emerging experience suggests that oncogene-driven signaling networks are highly robust with the capacity to rapidly adapt (12, 13). The future success of targeted therapy for melanoma and other cancers will depend upon the development of strategies that identify and overcome these adaptive escape mechanisms.The evaluation of targeted therapy responses in patients has proved to be challenging. The clinical development of HSP90 inhibitors has been hampered in part by the lack of a good pharmacodynamic assay for measuring HSP90 inhibition within tumor specimens (14). Additionally, very little is known about the adaptive changes that occur following the inhibition of MEK/ERK signaling in NRAS mutant melanoma. To address these issues, the optimal technique is liquid chromatography-multiple reaction monitoring mass spectrometry, which been shown to be highly reproducible and portable across laboratories (1518).In addition to these technical developments, LC-MRM has also been shown to have excellent application to the study of biological pathways, including phosphotyrosine signaling, β-catenin signaling in colon cancer, and the evasion of apoptosis following BRAF inhibition in PTEN null melanoma (1921). This technique can also be readily translated from cell line models to patient specimens. Here, we have developed a novel multiplexed LC-MRM assay to quantify the expression of >80 key signaling proteins in cell line models and fine needle aspirates from accessible melanoma lesions (22). In this study, we present the proof-of-principle for monitoring multiple signaling proteins in melanomas treated with either HSP90 or MEK inhibitors. Through this method, we identify the degradation of key HSP90 client proteins in vivo and elucidate a novel mechanism of adaptation to MEK inhibition through increased RTK signaling.  相似文献   
720.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号