Neisseria meningitidis is a pathogenic bacterium responsible for meningitis. The mechanisms underlying the control of Na+ transmembrane movement, presumably important to pathogenicity, have been barely addressed. To elucidate the function of the components of the Na+ transport system in N. meningitidis, an open reading frame from the genome of this bacterium displaying similarity with the NhaE type of Na+/H+ antiporters was expressed in Escherichia coli and characterized for sodium transport ability. The N. meningitidis antiporter (NmNhaE) was able to complement an E. coli strain devoid of Na+/H+ antiporters (KNabc) respecting the ability to grow in the presence of NaCl and LiCl. Ion transport assays in everted vesicles prepared from KNabc expressing NmNhaE from a plasmid confirmed its ability to translocate Na+ and Li+. Here is presented the characterization of the first NhaE from a pathogen, an important contribution to the comprehension of sodium ion metabolism in this kind of microorganisms. 相似文献
Cadmium (Cd) is a toxic metal and classified as a carcinogen whose exposure could affect the function of the central nervous system. There are studies that suggest that Cd promotes neurodegeneration in different regions of the brain, particularly in the hippocampus. It is proposed that its mechanism of toxicity maybe by an oxidative stress pathway, which modifies neuronal morphology and causes the death of neurons and consequently affecting cognitive tasks. However, this mechanism is not yet clear. The aim of the present work was to study the effect of Cd administration on recognition memory for 2, 3 and 4 months, neuronal morphology and immunoreactivity for caspase-3 and 9 in rat hippocampi. The results show that the administration of Cd decreased recognition memory. Likewise, it caused the dendritic morphology of the CA1, CA3 and dentate gyrus regions of the hippocampus to decrease with respect to the time of administration of this heavy metal. In addition, we observed a reduction in the density of dendritic spines as well as an increase in the immunoreactivity of caspase-3 and 9 in the same hippocampal regions of the animals treated with Cd. These results suggest that Cd affects the structure and function of the neurons of the hippocampus, which contribute to the deterioration of recognition memory. Our results suggest that the exposure to Cd represents a critical health problem, which if not addressed quickly, could cause much more serious problems in the quality of life of the human population, as well as in the environment in which they develop.
Upper limb nerve injuries are common, and their treatment poses a challenge for physicians and surgeons. Experimental models help in minimum exploration of the functional characteristics of peripheral nerve injuries of forelimbs. This study was conducted to characterize the functional recovery (1, 3, 7, 10, 14, and 21 days) after median and ulnar nerve crush in mice and analyze the histological and biochemical markers of nerve regeneration (after 21 days). Sensory–functional impairments appeared after 1 day. The peripheral nerve morphology, the nerve structure, and the density of myelin proteins [myelin protein zero (P0) and peripheral myelin protein 22 (PMP22)] were analyzed after 21 days. Cold allodynia and fine motor coordination recovery occurred on the 10th day, and grip strength recovery was observed on the 14th day after injury. After 21 days, there was partial myelin sheath recovery. PMP22 recovery was complete, whereas P0 recovery was not. Results suggest that there is complete functional recovery even with partial remyelination of median and ulnar nerves in mice.
Dinotefuran is a low-cost agrochemical considered a highly toxic product. In this sense, there is a need for its constant environmental, biological, and food control, aiming to ensure its use to humans as well as to preserve biodiversity and ecosystems. In the present work, we developed an experimental and theoretical method for dinotefuran chiral discrimination. According to the main results, the dinotefuran enantioselective separation was efficiently optimized by high-performance liquid chromatography evaluating the influence of different percentage compositions in the mobile phase to improve the resolution of the peaks in the chromatogram. The novelty of this work was the proposition of a reduced molecular model for the chiral selector amylose-Tris-(3,5-dimethylphenylcarbamate) polysaccharide that was able to adequately describe at the molecular level its interaction with the dinotefuran enantiomers. Besides, the thermodynamic and structural parameters obtained via density functional theory calculations pointed out the chiral discrimination as well as the enantiomeric elution order of the analyte studied, confirming the experimental data, thus validating our proposed method. Finally, hydrogen bonds and repulsive interactions played a key role in the discrimination between the diastereomeric complexes, and consequently, for the dinotefuran enantioselective separation. 相似文献
BackgroundThis study evaluates an active search strategy for leprosy diagnosis based on responses to a Leprosy Suspicion Questionnaire (LSQ), and analyzing the clinical, immunoepidemiological and follow-up aspects for individuals living in a prison population.MethodsA cross-sectional study based on a questionnaire posing 14 questions about leprosy symptoms and signs that was distributed to 1,400 prisoners. This was followed by dermatoneurological examination, anti-PGL-I serology and RLEP-PCR. Those without leprosy were placed in the Non-leprosy Group (NLG, n = 1,216) and those diagnosed with clinical symptoms of leprosy were placed in the Leprosy Group (LG, n = 34).FindingsIn total, 896 LSQ were returned (64%), and 187 (20.9%) of the responses were deemed as positive for signs/symptoms, answering 2.7 questions on average. Clinically, 1,250 (89.3%) of the prisoners were evaluated resulting in the diagnosis of 34 new cases (LG), based on well-accepted clinical signs and symptoms, a new case detection rate of 2.7% within this population, while the NLG were comprised of 1,216 individuals. The confinement time medians were 39 months in the LG while it was 36 months in the NLG (p>0.05). The 31 leprosy cases who responded to the questionnaire (LSQ+) had an average of 1.5 responses. The symptoms “anesthetized skin area” and “pain in nerves” were most commonly mentioned in the LG while “tingling, numbness in the hands/feet”, “sensation of pricks and needles”, “pain in nerves” and “spots on the skin” responses were found in more than 30% of questionnaires in the NLG. Clinically, 88.2% had dysesthetic macular skin lesions and 97.1% presented some peripheral nerve impairment, 71.9% with some degree of disability. All cases were multibacillary, confirming a late diagnosis. Anti-PGL-I results in the LG were higher than in the NLG (p<0.0001), while the RLEP-PCR was positive in 11.8% of the patients.InterpretationOur findings within the penitentiary demonstrated a hidden prevalence of leprosy, although the individuals diagnosed were likely infected while living in their former communities and not as a result of exposure in the prison. The LSQ proved to be an important screening tool to help identify leprosy cases in prisons. 相似文献
Trichoderma harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and Macrophomina phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. Hyphae of T.harzianum ALL42 did not show any coiling around Fusarium sp. hyphae suggesting that mycoparasitism may be different among the plant pathogens. In this study, a secretome analysis
was used to identify some extracellular proteins secreted by T.harzianum ALL42 after growth on cell wall of M.phaseolina, Fusarium sp., and R.solani. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. A total of 60 T.harzianum ALL42 secreted proteins excised from the gel were analyzed from the three growth conditions. While seven cell wall-induced
proteins were identified, more than 53 proteins spots remain unidentified, indicating that these proteins are either novel
proteins or proteins that have not yet been sequenced. Endochitinase, β-glucosidase, α-mannosidase, acid phosphatase, α-1,3-glucanase,
and proteases were identified in the gel and also detected in the supernatant of culture. 相似文献
The sunbittern (Eurypyga helias) is a South American Gruiformes, the only member of Family Eurypigidae. In most phylogenetic proposals, it is placed in a more distant position than other families of the so-called “core Gruiformes”. Different studies based on molecular, morphological and biogeographical data suggest that the Eurypigidae is closely related to the kagu (Rhynochetos jubatus), the only species in Rynochetidae, another family not included in the core Gruiformes. Here, the karyotype of the sunbittern is described for the first time, by classical and molecular cytogenetics, using whole chromosome probes derived from Gallus gallus and Leucopternis albicollis. We found a diploid number of 80, with only one pair of biarmed autosomal macrochromosomes, similar to that observed in the kagu. Chromosome painting revealed that most syntenies found in the avian putative ancestral karyotype (PAK) were conserved in the sunbittern. However, PAK1, PAK2, and PAK5 corresponded to two chromosome pairs each. Probes derived from L. albicollis confirm that fissions in PAK1 and PAK2 were centric, whereas in PAK5 the fission is interstitial. In addition, there is fusion of segments homologous to PAK2q and PAK5. From a phylogenetic point of view, comparisons of our results with two other Gruiformes belonging to family Rallidae suggest that the PAK5q fission might be a synapomorphy for Gruiformes. Fissions in PAK1 and PAK2 are found only in Eurypigidae, and might also occur in Rynochetidae, in view of the similar chromosomal morphology between the sunbittern and the kagu. This suggests a close phylogenetic relationship between Eurypigidae and Rynochetidae, whose common ancestor was separated by the Gondwana vicariancy in South America and New Caledonia, respectively. 相似文献
Most animals have complex life histories, composed of a series of ecologically distinct stages, and the transitions between stages are often plastic. Anurans are models for research on complex life cycles. Many species exhibit plastic timing of and size at metamorphosis, due to both environmental constraints on larval growth and development and adaptive plastic responses to environmental variation. Models predicting optimal timing of metamorphosis balance cost/benefit ratios across stages, assuming that size affects growth and mortality rates in each stage. Much research has documented such effects in the larval period, but we lack an equal understanding of juvenile growth and mortality. Here, we examine how variation in size at metamorphosis in the Neotropical red‐eyed treefrog, Agalychnis callidryas, affects post‐metamorphic growth, foraging, and behavior in the lab as well as growth and survival in the field. Surprisingly, many individuals lost mass for weeks after metamorphosis. In the lab, larger metamorphs lost more mass following metamorphosis, ate similar amounts, had lower food conversion efficiencies, and grew more slowly after mass loss ceased than did smaller ones. In field cages larger metamorphs were more likely to survive than smaller ones; just one froglet died in the lab. Our data suggest that size‐specific differences in physiology and behavior influence these trends. Comparing across species and studies, large size at metamorphosis generally confers higher survival; size effects on growth rates vary substantially among species, in both magnitude and direction, but may be stronger in the tropics. 相似文献
The objective was to evaluate the parthenogenetic activation of domestic cat oocytes. Cumulus-oocyte complexes matured for 36 h were subjected to three protocols of parthenogenetic activation: Group 1 - ionomycin + cycloheximide; Group 2 - ionomycin + roscovitine; and Group 3 - ionomycin + strontium. As a control, a fourth group of oocytes were cultured in the absence of any activation agent. In all groups, embryos were cultured in SOFaa for 72 h after activation and evaluated for activation rate, cleavage, and embryonic development using Hoechst33342. There were no significant differences among the three treated groups for rates of activated oocytes (70.1 ± 4.3, 75.5 ± 4.7, and 61.9 ± 7.2%, for Treatments 1, 2, and 3 respectively; mean ± SEM), or cleavage (48.1 ± 5.9, 47.4 ± 3.8, and 33.3 ± 6.8%). However, activation and cleavage rates were higher (P < 0.05) than those in the control group (35.5 ± 6.4 and 11.8 ± 4.0%). There were no significant differences among treatment groups for proportion of embryos with 2-10 cells, 10-16 cells, and morulas. In the Control group, the embryo production rate was lower (P < 0.05), although the activation rate was high. The authors concluded that all three treatments effectively induced parthenogenetic activation of domestic cat oocytes. However, to optimize the use of strontium and roscovitine, a dose response and the effect of the presence of Ca++ in the medium requires further study. 相似文献
Blood-feeding organisms digest hemoglobin, releasing large quantities of heme inside their digestive tracts. Free heme is
very toxic, and these organisms have evolved several mechanisms to protect against its deleterious effects. One of these adaptations
is the crystallization of heme into the dark-brown pigment hemozoin (Hz). Here we review the process of Hz formation, focusing
on organisms other than Plasmodium that have contributed to a better understanding of heme crystallization. Hemozoin has been found in several distinct classes
of organisms including protozoa, helminths and insects and Hz formation is the predominant form of heme detoxification. The
available evidence indicates that amphiphilic structures such as phospholipid membranes and lipid droplets accompanied by
specific proteins play a major role in heme crystallization. Because this process is specific to a number of blood-feeding
organisms and absent in their hosts, Hz formation is an attractive target for the development of novel drugs to control illnesses
associated with these hematophagous organisms. 相似文献