首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   40篇
  2023年   2篇
  2022年   7篇
  2021年   13篇
  2020年   5篇
  2019年   10篇
  2018年   14篇
  2017年   14篇
  2016年   28篇
  2015年   38篇
  2014年   48篇
  2013年   59篇
  2012年   78篇
  2011年   52篇
  2010年   42篇
  2009年   43篇
  2008年   36篇
  2007年   53篇
  2006年   35篇
  2005年   29篇
  2004年   33篇
  2003年   34篇
  2002年   19篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1962年   1篇
  1958年   1篇
排序方式: 共有749条查询结果,搜索用时 328 毫秒
161.
A study of the in vitro reconstitution of sugar beet cytochrome b (559) of the photosystem II is described. Both α and β cytochrome subunits were first cloned and expressed in Escherichia coli. In vitro reconstitution of this cytochrome was carried out with partially purified recombinant subunits from inclusion bodies. Reconstitution with commercial heme of both (αα) and (ββ) homodimers and (αβ) heterodimer was possible, the latter being more efficient. The absorption spectra of these reconstituted samples were similar to that of the native heterodimer cytochrome b (559) form. As shown by electron paramagnetic resonance and potentiometry, most of the reconstituted cytochrome corresponded to a low spin form with a midpoint redox potential +36?mV, similar to that from the native purified cytochrome b (559). Furthermore, during the expression of sugar beet and Synechocystis sp. PCC 6803 cytochrome b (559) subunits, part of the protein subunits were incorporated into the host bacterial inner membrane, but only in the case of the β subunit from the cyanobacterium the formation of a cytochrome b (559)-like structure with the bacterial endogenous heme was observed. The reason for that surprising result is unknown. This in vivo formed (ββ) homodimer cytochrome b (559)-like structure showed similar absorption and electron paramagnetic resonance spectral properties as the native purified cytochrome b (559). A higher midpoint redox potential (+126?mV) was detected in the in vivo formed protein compared to the in vitro reconstituted form, most likely due to a more hydrophobic environment imposed by the lipid membrane surrounding the heme.  相似文献   
162.
SarkOne is a genus-specific satellite-DNA family, isolated from the genomes of the species of the genus Sarcocapnos. This satellite DNA is composed of repeats with a consensus length of 855 bp and a mean G+C content of 52.5%. We have sequenced a total of 189 SarkOne monomeric repeats belonging to a total of seven species of the genus Sarcocapnos. The comparative analysis of these sequences both at the intraspecific and the interspecific levels have revealed divergence patterns between species are proportional to between-species divergence according to the phylogeny of the genus. Our study demonstrates that the molecular drive leading to the concerted-evolution pattern of this satellite DNA is a time-dependent process by which new mutations are spreading through genomes and populations at a gradual pace. However, time is a limiting factor in the observation of concerted evolution in some pairwise comparisons. Thus, pairwise comparisons of species sharing a recent common ancestor did not reveal nucleotide sites in transitional stages higher than stage III according to the Strachan's model. By contrast, there was a gradation in the percentage of upper transition stages (IV, V, VI) the more phylogenetically distant the species were. In addition, closely related species shared a high number of polymorphic sites, but these types of sites were not common when comparing more distant species. All these data are discussed in the light of current life-cycle models of satellite-DNA evolution.  相似文献   
163.
The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization.  相似文献   
164.
Halomonas maura is a bacterium of great metabolic versatility. We summarise in this work some of the properties that make it a very interesting microorganism both from an ecological and biotechnological point of view. It plays an active role in the nitrogen cycle, is capable of anaerobic respiration in the presence of nitrate and has recently been identified as a diazotrophic bacterium. Of equal interest is mauran, the exopolysaccharide produced by H. maura, which contributes to the formation of biofilms and thus affords the bacterium advantages in the colonisation of its saline niches. Mauran is highly viscous, shows thixotropic and pseudoplastic behaviour, has the capacity to capture heavy metals and exerts a certain immunomodulator effect in medicine. All these attributes have prompted us to make further investigations into its molecular characteristics. To date we have described 15 open reading frames (ORF’s) related to exopolysaccharide production, nitrogen fixation and nitrate reductase activity among others.  相似文献   
165.
Mitral regurgitation (MR) is associated with increased neuronal release of norepinephrine (NE) and epinephrine (EP) into myocardial interstitial fluid (ISF) that may be necessary in sustaining left ventricular (LV) function via activation of cardiomyocyte beta-adrenergic receptors (ARs). However, activation of neuronal beta-ARs on cardiac neurons may lead to further catecholamine release, with an attendant risk of functional deterioration. We hypothesize that a beneficial effect of beta-AR blockade may therefore mitigate excessive catecholamine release from cardiac adrenergic neurons in dogs with MR. We measured the effects of chronic beta-receptor blockade (beta-RB) on ISF NE and EP release using in vivo microdialysis in open-chest anesthetized dogs after 4 wk of MR with or without extended release of metoprolol succinate (100 mg/day) as well as in control dogs. Fractional shortening increased by 30% in both MR and MR + beta-RB dogs after 4 wk of MR. In MR + beta-RB dogs, stellate-stimulated heart rate change was attenuated compared with control and MR dogs, whereas peak change of LV pressure over time (+dP/dt) increased equally in all groups. Stellate-stimulated ISF NE increased fivefold over baseline in MR versus twofold in control dogs (< 0.05), but the NE release was significantly attenuated in MR + beta-RB dogs. In contrast, stellate-stimulated increases in ISF EP did not differ in control, MR, and MR + beta-RB dogs. This study demonstrates that beta-RB attenuates ISF NE release from cardiac neurons and that the LV functional response to MR is not dependent on an excess increase in ISF NE. Thus beta1-RB may exert a beneficial effect by attenuating untoward effects of excessive sympathetic efferent neural NE release while sustaining early LV functional adaptation to MR.  相似文献   
166.
The molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor (EGF)-like factors amphiregulin (Areg), epiregulin (Ereg), and betacellulin (Btc) are induced in cumulus oocyte complexes (COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins (PGs) and progesterone receptor (PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 (Ptgs2) null mice and Pgr null (PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK (SB203580), MAPK kinase (MEK) 1 (PD98059), and PTGS2 (NS398) but not protein kinase A (PKA) (KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 (AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12-myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis (StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein-coupled receptor and growth factor receptor pathways in ovulating follicles.  相似文献   
167.
Ovulation is the complex, inflammatory-like process by which the cumulus oocyte complex (COC) is released from a mature, preovulatory follicle through a rupture site at the ovarian surface and requires expression of genes that generate and stabilize the expanded extracellular COC matrix. Gene profiling analyses of COCs at selected time intervals during ovulation revealed that many genes associated with immune related surveillance functions were also induced in cumulus cells. Specifically, cell surface signaling molecules known as pattern recognition receptors that act as sensors of the external environment important for the innate immune system to detect self from nonself or altered self are induced and/or expressed in cumulus cells as well as granulosa cells. These include the complement factor q1, CD14, and the Toll-like receptors (TLRs) 4, 8, and 9 as well as mediators of TLR activation, myeloid differentiation primary response gene 88 and interferon regulatory factor 3. COCs exposed to bacterial lipopolysaccharide exhibit enhanced phosphorylation of p38MAPK, ERK1/2 and nuclear factor-kappaB and increased expression of Il6 and Tnfa target genes, documenting that the TLR pathway is functional. Cumulus cells and granulosa cells also express the scavenger receptors CD36 and scavenger receptor type B1 and exhibited phagocytic uptake of fluorescently tagged bacterial particles. Collectively, these results provide novel evidence that cumulus cells as well as granulosa cells express innate immune related genes that may play critical roles in surveillance and cell survival during the ovulation process.  相似文献   
168.
Ovulation is a complex process initiated by the preovulatory LH surge, characterized by cumulus oocyte complex (COC) expansion and completed by the release of a mature oocyte. Although many ovarian genes that impact ovulation have been identified, we hypothesized that genes selectively expressed in COCs would be overlooked by approaches using whole ovary or granulosa cell samples. RNA isolated from COCs collected from preovulatory follicles of equine chorionic gonadotropin (CG) primed mice and at selected times after human CG treatment was subjected to microarray analyses and results confirmed by RT-PCR analyses, Western blotting, and immunofluorescent studies. A remarkable number of genes were up-regulated in COCs including Areg, Ereg, and Btc. Several genes selectively expressed in cumulus cells compared with granulosa cells were related to neuronal (Mbp, Tnc, Nts) or immune (Alcam, Pdcd1, Cd34, Cd52, and Cxcr4) cell function. In addition to Sfrp2, other members of the Wnt/Fzd family (Sfrp4, Fdz1 and Fdz2) were expressed in COCs. Thus, there is a cumulus cell-specific, terminal differentiation process. Furthermore, immunofluorescent analyses documented that cumulus cells are highly mitotic for 4-8 h after human CG and then cease dividing in association with reduced levels of Ccnd2 mRNA. Other down-regulated genes included: Cyp19a1, Fshr, Inhb, and the oocyte factors Zp1-3 and Gja4. In summary, the vast number of matrix, neuronal, and especially immune cell-related genes identified by the gene- profiling data of COCs constitutes strong and novel evidence that cumulus cells possess a repertoire of immune functions that could be far greater than simply mediating an inflammatory-like response.  相似文献   
169.
Introduction of selected amine containing side chains into the 3-position of N',2-diphenylquinoline-4-carbohydrazide based NK3 antagonists abolishes unwanted hPXR activation. Introduction of a fluorine at the 8-position is necessary to minimize unwanted hI(Kr) affinity and a piperazine N-tert-butyl group is necessary for metabolic stability. The lead compound (8m) occupies receptors within the CNS following oral dosing (Occ(90) 7 mg/kg po; plasma Occ(90) 0.4 microM) and has good selectivity and excellent PK properties.  相似文献   
170.
Ca2+ plays a critical role as second messenger in the signal–response coupling of plant defence responses, and methyl-jasmonate and methyl-salicylate are important components of signal transduction cascades activating plant defences. When intact axenic non-induced seedling roots of sunflower were treated with different Ca2+ concentrations up to 1 mM, there was no significant increase in O 2 .? generation or DMAB–MBTH peroxidase (extracellular, ECPOX) activities in the apoplast, probably because these roots had enough Ca2+ in their exo- and endocellular reservoirs. Both activities were strongly inhibited by the RBOH–NADPH oxidase inhibitor DPI and by the Ca2+ surrogate antagonist La3+, but the voltage-dependent Ca2+ channel blocker verapamil was only inhibitory at concentrations higher than those active on animal L-type Ca2+ channels. Concentrations >5 mM EGTA (chelating Ca2+ in the apoplast) and Li+ (inhibiting PI cycle dependent endogenous Ca2+ fluxes) also inhibited both activities. W7, inhibitor of binding of Ca–CaM to its target protein, enhanced both activities, but the inactive analogue W5 showed a similar effect. Our data suggest that Ca2+ from exocellular and, to a lesser extent, from endocellular stores is involved in oxidative activities, and that RBOH–NADPH oxidase is the main system supporting them. Ca2+ activation of the PM cytosolic side of RBOH–NADPH oxidase is probably the key to Ca2+ involvement in these processes. Roots induced by MeJA or MeSA showed significant enhancement of both oxidative activities, as corresponding to the oxidative burst evoked by the two phytohormones in the root apoplast. But while ECPOX activity showed a response to the effectors similar to that described above for non-induced roots, O 2 .? generation activity in the apoplast of induced roots was insensitive to EGTA, verapamil and Li+, the inhibitors of exogenous and endogenous Ca2+ fluxes; only DPI and La3+ were inhibitory. As exogenously added 0.1 mM Ca2+ also increased O 2 .? generation, we propose that, in these roots, activation of RBOH–NADPH oxidase by Ca2+ could be regulated by Ca2+ sensors in the apoplast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号