首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   745篇
  免费   39篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   6篇
  2019年   11篇
  2018年   14篇
  2017年   15篇
  2016年   30篇
  2015年   37篇
  2014年   49篇
  2013年   61篇
  2012年   79篇
  2011年   53篇
  2010年   45篇
  2009年   45篇
  2008年   38篇
  2007年   54篇
  2006年   36篇
  2005年   32篇
  2004年   32篇
  2003年   37篇
  2002年   20篇
  2001年   7篇
  2000年   5篇
  1999年   10篇
  1998年   4篇
  1997年   3篇
  1996年   10篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有784条查询结果,搜索用时 15 毫秒
111.
A membrane-associated chromate reductase from Thermus scotoductus SA-01 has been purified to apparent homogeneity and shown to couple the reduction of Cr(VI) to NAD(P)H oxidation, with a preference towards NADH. The chromate reductase is a homodimer with a monomeric molecular weight of 48 kDa and a noncovalently bound FAD coenzyme. The enzyme is optimally active at a pH of 6.5 and 65 degrees C with a K(m) of 55.5+/-4.2 microM and a V(max) of 2.3+/-0.1 micromol Cr(VI) min(-1) mg(-1) protein. The catalytic efficiency (k(cat)/K(m)) of the enzyme was found to be comparable to that found for quinone reductases but more efficient than the nitroreductases. N-terminal sequencing and subsequent screening of a genomic library of T. scotoductus revealed an ORF of 1386 bp, homologous (84%) to the dihydrolipoamide dehydrogenase gene of Thermus thermophilus HB8. These results extend the knowledge of chromate reductases mediating Cr(VI) reduction via noncovalently bound or free redox-active flavin groups and the activity of dihydrolipoamide dehydrogenases towards physiologically unrelated substrates.  相似文献   
112.
The method of sperm recovery may influence the initial quality of sperm samples and their response to freezing–thawing. The aim of the present work was to compare two methods for collecting epididymal spermatozoa in order to improve the quality of recovered sperm and reduce possible contamination. Testes were obtained from 23 legally hunted, adult ibex males. The sperm mass of the right epididymis was collected by small longitudinal and transverse cuts made in the cauda epididymidis. The sperm mass of the left epididymis was collected by retrograde flushing from the vas deferens to the cauda epididymidis (using a cannula), employing a Tris, citric acid, glucose, egg yolk-based medium. The flushing method recovered more spermatozoa (P < 0.001) than the cutting method. After freezing–thawing, greater acrosomes damage (P < 0.001) and more morphological abnormalities (P < 0.05) were seen among the sperm cells recovered by the cutting method than among those obtained by retrograde flushing. The method of sperm recovery did not, however, influence the microbial contamination rate. In frozen–thawed samples that were microbially contaminated, motility was significantly reduced (P < 0.05) and membrane integrity tended to be poorer (P = 0.06). In conclusion, retrograde flushing is recommended for ibex sperm collection since it would appear that microbial contamination is no more of a problem than that encountered with the cutting method, while a larger number of sperm cells more resistant to freezing–thawing can be obtained.  相似文献   
113.
The alkali-extractable water-soluble polysaccharides F1SS isolated from the cell wall of two isolates of the pathogen Neotestudina rosatii and one of Pseudophaeotrichum sudanense, which is now considered as a synonym of the former, have been studied by methylation analysis, GC–MS and NMR spectroscopy. The three polysaccharides differ mainly in their content in galactofuranose, and have the following idealized repeating unit:   相似文献   
114.
Golgi fragmentation is a process that is necessary to allow its redistribution into daughter cells during mitosis, a process controlled by serine-threonine kinases. This Golgi fragmentation is activated by MEK1 and Plk3. Plk3 is a kinase that is a downstream target in the Golgi fragmentation pathway induced by MEK1 or by nocodazole. In this work, we have identified that Plk3 and VRK1 are two consecutive steps in this signaling pathway. Plk3 interacts with VRK1, forming a stable complex detected by reciprocal immunoprecipitations and pull-down assays; VRK1 colocalizes with giantin in the Golgi apparatus, as Plk3 also does, forming clearly detectable granules. VRK1 does not phosphorylate Plk3, but Plk3 phosphorylates the C-terminal region of VRK1 in Ser342. VRK1 with substitutions in S342 is catalytically active but blocks Golgi fragmentation, indicating that its specific phosphorylation is necessary for this process. The induction of Golgi fragmentation by MEK1 and Plk3 can be inhibited by kinase-dead VRK1, the knockdown of VRK1 by siVRK1, kinase-dead Plk3, or PD98059, a MEK1 inhibitor. The Plk3-VRK1 kinase module might represent two consecutive steps of a signaling cascade that participates in the regulation of Golgi fragmentation.The Golgi apparatus in mammalian cells is formed by cistern stacks, tubules, and small vesicles, which undergo extensive and sequential fragmentation in mitosis (33). The reorganization of the Golgi apparatus, involving fragmentation, dispersal, and reassembly, is tightly regulated during mitosis (1, 27, 30), and reversible phosphorylation plays a critical role (1, 21), although the components and their sequential organization in the context of the initiation or execution of the signal required for Golgi fragmentation are only partially known.Many signaling pathways are composed of consecutive kinases. Characterization of new signaling pathways requires the identification of their components, the connections between them, and the order in which they are organized. Human VRK1 is a novel serine-threonine kinase that phosphorylates several proteins implicated in cellular responses to stress and DNA damage, such as p53 (5, 20, 40), c-Jun (31), and ATF2 (32), as well as proteins needed for nuclear envelope assembly required at the end of mitosis, such as Baf (25). In addition, VRK1 kinase activity is inhibited by interaction with RanGDP, and this inhibition is relieved by RanGTP, suggesting an asymmetric distribution of its activity within the nucleus and in mitosis (29). These properties suggest that the VRK1 gene plays a role in the regulation of cell cycle initiation and/or progression, consistent with its requirement for entry into the cell cycle, where it behaves as an immediate-early response gene like c-MYC and FOS (36). The loss of VRK1 by use of small interfering RNA (siRNA) induces an early G1 block, before cyclin D1 expression (36), which is accompanied by a reduction in the phospho-retinoblastoma level and an accumulation of cycle inhibitors, such as p27 (36), resulting in a stop in cell cycle progression (36, 40).Several kinases are implicated in the control of cell proliferation and in different mitotic checkpoints; among them are the polo-like kinase (Plk) family, which is a group composed of four proteins (14, 39, 46). One of them, Plk3, contributes as a mediator of DNA damage checkpoint responses, since its kinase activity increases after oxidative stress (43) and induction of DNA damage by ionizing radiomimetic drugs (45). Plk3 physically interacts with and phosphorylates p53 in Ser20, and this interaction increases in response to DNA damage and induces either cell cycle arrest or apoptosis (44) so that genetic stability can be maintained by the prevention of the accumulation of genetic damage. Furthermore, Plk3 interacts with Chk2 (2, 45), an important mediator of DNA damage responses (6, 16), and there is a functional connection between them since Plk3 phosphorylates Chk2 in Ser62 and Ser73, which are necessary for full Chk2 activation by ATM (4). In mitotic cells, Plk3 is localized associated with the spindle poles and mitotic spindles, and deregulated expression of Plk3 induces cell cycle arrest and apoptosis by the perturbation of microtubule integrity (41). In addition, Plk3 expression is induced after mitogenic stimulation, and it is required for mitotic (28) and S-phase (48) entry. Plk3 also regulates Cdc25C (3, 23, 26) and the NF-κB signaling pathway (19). VRK1 phosphorylates p53 in Thr18 (20, 40), a residue phosphorylated in response to taxol, an inhibitor of microtubule polymerization (34).There is a possibility that VRK1 and Plk3 might be connected in some way, since subpopulations of both VRK1 (37) and Plk3 (28) have been detected in the Golgi apparatus near the centrosome, where they colocalize with Golgi markers such as giantin or GM130 (33). Golgi fragmentation can be induced by MEK1 (1, 15), and this signal is partly mediated by Plk3 (28, 42). Moreover, Golgi fragmentation is a required step during mitosis, occurring late in the G2/M phase of the cell cycle (11), and MEK1 is implicated in the activation of this process (1, 15).The common biological aspects of VRK1 and Plk3 proteins and the association of VRK1 and Plk3 subpopulations in the Golgi apparatus led us to think that there might be a functional connection between these two kinases and thus that they might be components in a common signaling pathway. In this work, we explored the possible connection between VRK1 and Plk3 and determined if they were functionally related in a biological process, Golgi fragmentation, in which one of them, Plk3, is already known to participate. This work demonstrates that Plk3 and VRK1 are consecutive components in the signaling pathway that induces Golgi fragmentation in mitosis.  相似文献   
115.
The cluster of early cephalosporin biosynthesis genes (pcbAB, pcbC, cefD1, cefD2 and cefT of Acremonium chrysogenum) contains all of the genes required for the biosynthesis of the cephalosporin biosynthetic pathway intermediate penicillin N. Downstream of the cefD1 gene, there is an unassigned open reading frame named cefM encoding a protein of the MFS (major facilitator superfamily) with 12 transmembrane domains, different from the previously reported cefT. Targeted inactivation of cefM by gene replacement showed that it is essential for cephalosporin biosynthesis. The disrupted mutant accumulates a significant amount of penicillin N, is unable to synthesize deacetoxy-, deacetyl-cephalosporin C and cephalosporin C and shows impaired differentiation into arthrospores. Complementation of the disrupted mutant with the cefM gene restored the intracellular penicillin N concentration to normal levels and allowed synthesis and secretion of the cephalosporin intermediates and cephalosporin C. A fused cefM-gfp gene complemented the cefM-disrupted mutant, and the CefM-GFP (green fluorescent protein) fusion was targeted to intracellular microbodies that were abundant after 72 h of culture in the differentiating hyphae and in the arthrospore chains, coinciding with the phase of intense cephalosporin biosynthesis. Since the dual-component enzyme system CefD1-CefD2 that converts isopenicillin N into penicillin N contains peroxisomal targeting sequences, it is probable that the epimerization step takes place in the peroxisome matrix. The CefM protein seems to be involved in the translocation of penicillin N from the peroxisome (or peroxisome-like microbodies) lumen to the cytosol, where it is converted into cephalosporin C.  相似文献   
116.
The olive tree (Olea europaea L.), like many other woody plants, has a long juvenile period in which the plant is not able to produce flowers. Knowledge of the moment when the plant is capable of flowering is important for breeding programs and also for determining the physiological basis for sexual reproductive behavior, but currently the only indicator of that moment is the actual flowering. In many species, the juvenile-to-adult phase shift includes changes in leaf structure known as heteroblasty, that is, varied form of successive leaves on the same plant. Some differences have been observed between juvenile and adult olive leaves, particularly in size and form, but to our knowledge, no complete systematic study has been carried out. In this research, we measured size, morphology and anatomy for juvenile and adult leaves of olive plants grown from seeds. Differences were found in most of the parameters studied, including leaf size, form, mesophyll thickness, layers of palisade parenchyma and quantity of peltate trichomes, which were generally significant but overlapping between the two leaf types. The most consistent and striking difference was the presence of an organized layer of subepidermal cells only in the abaxial mesophyll of adult leaves. This characteristic could be a simple and effective criterion of phase change in the olive tree.  相似文献   
117.
In this paper we have attempted to clarify the taxonomy and nomenclature of thirteen taxa of the genus Cortinarius subgenus Telamonia (sections Hydrocybe, Fraternii) well represented in the southwestern Mediterranean area of Europe (C. atrocoeruleus, C. bombycinus, C casimiri, C. contrarius, C. decipiens, C. fraternus, C. gallurae, C. hoffmannii, C. petroselineus, C. sertipes, C. subturibulosus, C. urdaibaiensis and C. vernus). To this end we have performed a combined study of morphological and molecular data (rDNA ITS sequences). The morphological analysis was carried out on 114 collections and the molecular analysis involved 31 of the 114 collections, including 11 type collections (types for C. casimiri and C. fraternus were not available). In addition, a study of spores under field emission scanning electron microscopy (FESEM) was conducted. The results of the combined analysis allowed us to asign the studied material to five species (C. casimiri s.l., C. decipiens s.l., C. gallurae, C. subturibulosus s.l. and C. vernus s.l.). Thus, all collections from more continental areas, which were originally identified as six different taxa (C. atrocoeruleus, C. contrarius, C. decipiens, C. fraternus, C. sertipes, C. flexipes fo. sertipes) corresponded to C. decipiens sensu lato, a widely distributed, genetically and morphologically variable species. Cortinarius casimiri is also found in such habitats, but it is confirmed as distinct taxon. Collections from Mediterranean sclerophyllous communities correspond to C. gallurae, C. vernus sensu lato and C. subturibulosus sensu lato. Due to close phylogenetic relationships we propose the new combinations C. casimiri var. hoffmannii (=C. decipiens var. hoffmannii non C. hoffmannii) and C. subturibulosus var. bombycinus (=C. bombycinus), and the new variety C. vernus var. nevadavernus (=C. vernus H. Lindstr. & Melot sensu auct.).  相似文献   
118.
119.
Phosphorylcholine, a crucial component of the pneumococcal cell wall, is essential in bacterial physiology and in human pathogenesis because it binds to serum components of the immune system and acts as a docking station for the family of surface choline‐binding proteins. The three‐dimensional structure of choline‐binding protein F (CbpF), one of the most abundant proteins in the pneumococcal cell wall, has been solved in complex with choline. CbpF shows a new modular structure composed both of consensus and non‐consensus choline‐binding repeats, distributed along its length, which markedly alter its shape, charge distribution and binding ability, and organizing the protein into two well‐defined modules. The carboxy‐terminal module is involved in cell wall binding and the amino‐terminal module is crucial for inhibition of the autolytic LytC muramidase, providing a regulatory function for pneumococcal autolysis.  相似文献   
120.

Background  

Penicillium chrysogenum converts isopenicillin N (IPN) into hydrophobic penicillins by means of the peroxisomal IPN acyltransferase (IAT), which is encoded by the penDE gene. In silico analysis of the P. chrysogenum genome revealed the presence of a gene, Pc13g09140, initially described as paralogue of the IAT-encoding penDE gene. We have termed this gene ial because it encodes a protein with high similarity to IAT (IAL for IAT-Like). We have conducted an investigation to characterize the ial gene and to determine the role of the IAL protein in the penicillin biosynthetic pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号