首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   9篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   9篇
  2014年   8篇
  2013年   13篇
  2012年   14篇
  2011年   10篇
  2010年   13篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   10篇
  2005年   8篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有194条查询结果,搜索用时 734 毫秒
71.
Plant ROP (Rho of plants) proteins form a unique subgroup within the family of Rho-type small G-proteins of eukaryotes. In this paper we demonstrate that the phosphomimetic mutation of a serine residue conserved in all Rho proteins affects the signaling properties of plant ROPs. We found that the S74E mutation in Medicago ROP6 and Arabidopsis ROP4 prevented the binding of these proteins to their plant-specific upstream activator the plant-specific ROP nucleotide exchanger (PRONE)-domain-containing RopGEF (guanine nucleotide exchange factor) protein and abolished the PRONE-mediated nucleotide exchange reaction in vitro. Structural modeling supported the hypothesis that potential phosphorylation of the S74 residue interferes with the binding of the PRONE-domain to the adjacent plant-specific R76 residue which plays an important role in functional ROP-PRONE interaction. Moreover, we show that while the binding of constitutively active MsROP6 to the effector protein RIC (ROP-interactive CRIB-motif-containing protein) was not affected by the S74E mutation, the capability of this mutated protein to bind and activate the RRK1 kinase in vitro was reduced. These observations are in agreement with the morphology of tobacco pollen tubes expressing mutant forms of yellow fluorescent protein (YFP):MsROP6. The S74E mutation in MsROP6 had no influence on pollen tube morphology and attenuated the phenotype of a constitutively active form of MsROP6. The presented Medicago and Arabidopsis data support the notion that the phosphorylation of the serine residue in ROPs corresponding to S74 in Medicago ROP6 could be a general principle for regulating ROP activation and signaling in plants.  相似文献   
72.
The O antigen is the outer part of the lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria and contains many repeats of an oligosaccharide unit. It contributes to antigenic variability and is essential to the full function and virulence of bacteria. Shigella is a Gram-negative human pathogen that causes diarrhea in humans. The O antigen of Shigella boydii type 14 consists of repeating oligosaccharide units with the structure [→6-d-Galpα1→4-d-GlcpAβ1→6-d-Galpβ1→4-d-Galpβ1→4-d-GlcpNAcβ1→]n. The wfeD gene in the O-antigen gene cluster of Shigella boydii type 14 was proposed to encode a galactosyltransferase (GalT) involved in O-antigen synthesis. We confirmed here that the wfeD gene product is a β4-GalT that synthesizes the Galβ1-4GlcNAcα-R linkage. WfeD was expressed in Escherichia coli, and the activity was characterized by using UDP-[3H]Gal as the donor substrate as well as the synthetic acceptor substrate GlcNAcα-pyrophosphate-(CH2)11-O-phenyl. The enzyme product was analyzed by liquid chromatography-mass spectrometry (LC-MS), high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and galactosidase digestion. The enzyme was shown to be specific for the UDP-Gal donor substrate and required pyrophosphate in the acceptor substrate. Divalent metal ions such as Mn2+, Ni2+, and, surprisingly, also Pb2+ enhanced the enzyme activity. Mutational analysis showed that the Glu101 residue within a DxD motif is essential for activity, possibly by forming the catalytic nucleophile. The Lys211 residue was also shown to be required for activity and may be involved in the binding of the negatively charged acceptor substrate. Our study revealed that the β4-GalT WfeD is a novel enzyme that has virtually no sequence similarity to mammalian β4-GalT, although it catalyzes a similar reaction.Lipopolysaccharides (LPSs) consist of O-polysaccharide (O-antigenic) side chains covalently linked to a core polysaccharide and lipid A. LPSs are found in the outer membranes of Gram-negative bacteria, where they contribute to the structural integrity of the membrane and interact with the external environment (9, 10, 15). In the complex and dynamic microbial ecosystem of the human intestine, the communication between microorganisms and the gastrointestinal (GI) epithelium involves O-antigen and LPS binding molecules. Thus, the elimination of the O antigen may reduce virulence (2, 16, 21). Shigella is a genus of highly adapted bacterial pathogens that cause gastrointestinal disease, such as bacillary dysentery or shigellosis. A recent survey showed that shigellosis causes approximately 165 million cases of severe dysentery and more than 1 million deaths per year, mostly in children from developing countries (10). Shigella strains are categorized into four groups: S. boydii, S. dysenteriae, S. flexneri, and S. sonnei, each containing multiple subgroups of different serotypes, based on structural variations in their O antigens.O antigens consist of repeating units of oligosaccharides that are assembled individually, followed by the polymerization of units to form O antigens of different lengths. The glycosyltransferases involved in the biosynthesis of O antigens play a critical role in determining O-antigen structural diversity. The pentasaccharide repeating unit of S. boydii type 14 (B14) has the structure [→6-d-Galpα1→4-d-GlcpAβ1→6-d-Galpβ1→4-d-Galpβ1→4-d-GlcpNAcβ1→]n (12), suggesting the existence of five specific glycosyltransferases: a GlcNAc-phosphotransferase (WecA), three Gal-transferases, and a glucuronosyltransferase.Three distinct processes for the synthesis and translocation of O antigens have been described: the Wzx/Wzy-dependent pathway, the ATP binding cassette transporter-dependent process, and the synthase-dependent process (20, 25, 26). The biosynthesis of the S. boydii B14 O antigen that contains a variety of different sugar residues is expected to utilize the Wzy/Wzx-dependent pathway, where the synthesis of the repeating unit is initiated by WecA, catalyzing the transfer of sugar-phosphate (GlcNAcα-phosphate) from nucleotide sugar (UDP-GlcNAc) to a lipid carrier, undecaprenol-phosphate (Und-P), at the cytoplasmic side of the inner membrane. The wecA gene is present in the S. boydii B14 genome but outside the O-antigen gene cluster (1). The wecA gene is also involved in the synthesis of bacterial polysaccharides other than the O antigen. The extension of the chain is then mediated by specific glycosyltransferases that utilize nucleotide sugar donor substrates and are thought to be loosely associated with the inner membrane. In contrast, mammalian glycosyltransferases are usually membrane-bound proteins. Bacterial and mammalian glycosyltransferases, although they may have similar substrate specificities and form the same linkage, show significantly different amino acid sequences (4). Completed repeating units are then flipped across the membrane to the periplasmic side (by the flippase Wzx) and are polymerized (by Wzy) to form the O antigen under the control of a chain length regulator (Wzz). The repeating units are initially linked to the lipid carrier through GlcNAcα-phosphate. However, the S. boydii B14 O antigen has GlcNAc in the β linkage; thus, upon the polymerization of the completed repeating units, the linkage may be inverted, probably through the specific action of the polymerase Wzy. The entire polymer is then ligated to an outer core sugar based on lipid A. Upon completion, the LPS is extruded from the inner membrane and translocated to the outer membrane (19, 26). The latter-acting enzymes have multiple transmembrane regions that integrate them into the bacterial membranes.Genes involved in O-antigen biosynthesis are normally clustered between galF and gnd in Escherichia coli and Shigella and are classified into three different groups: (i) nucleotide sugar synthesis genes involved in the synthesis of donor substrates, (ii) glycosyltransferase genes, and (iii) O-antigen-processing genes, such as the flippase gene wzx and the polymerase gene wzy. The O-antigen gene cluster of B14 has been sequenced and analyzed (10). Four putative glycosyltransferase genes found in the B14 O-antigen synthesis gene cluster are wfeA, wfeB, wfeD, and wfeE. WfeD shares 38% identity and 57% similarity to the putative glycosyltransferase Orf9, which is involved in the synthesis of the E. coli O136 O antigen (our unpublished data). Since the O antigens of B14 and E. coli O136 share only one common linkage, d-Galpβ1→4-d-GlcpNAc (12, 23), wfeD was proposed to encode the galactosyltransferase (GalT) that transfers Gal to GlcNAcα-PP-Und in the β1-4 linkage, which is the second step in the biosynthetic pathway of the B14 O-antigen repeating unit.We have used biochemical approaches to assay the WfeD enzyme activity and to characterize this enzyme. The lipid carrier analog GlcNAcα-PO3-PO3-(CH2)11-O-phenyl [GlcNAc-PP-(CH2)11-OPh] has previously been used as a defined synthetic acceptor substrate for the characterization of glycosyltransferases from E. coli serotypes O7 (β1,3-GalT WbbD), O56 (β1,3-Glc-transferase WfaP), and O152 (β1,3-Glc-transferase WfgD) (6, 17). In this work, we showed that GlcNAc-PP-(CH2)11-OPh could also serve as an exogenous substrate for WfeD from B14. We were therefore able to prove that wfeD encodes a novel β1,4-GalT.  相似文献   
73.
Kelps are important providers and constituents of marine ecological niches, the coastal kelp forests. Kelp species have differing distribution ranges, but mainly thrive in temperate and arctic regions. Although the principal factors determining biogeographic distribution ranges are known, genomics could provide additional answers to this question. We sequenced DNA from two Laminaria species with contrasting distribution ranges, Laminaria digitata and Laminaria solidungula. Laminaria digitata is found in the Northern Atlantic with a southern boundary in Brittany (France) or Massachusetts (USA) and a northern boundary in the Arctic, whereas L. solidungula is endemic to the Arctic only. From the raw reads of DNA, we reconstructed both chloroplast genomes and annotated them. A concatenated data set of all available brown algae chloroplast sequences was used for the calculation of a robust phylogeny, and sequence variations were analyzed. The two Laminaria chloroplast genomes are collinear to previously analyzed kelp chloroplast genomes with important exceptions. Rearrangements at the inverted repeat regions led to the pseudogenization of ycf37 in L. solidungula, a gene possibly required under high light conditions. This defunct gene might be one of the reasons why the habitat range of L. solidungula is restricted to lowlight sublittoral sites in the Arctic. The inheritance pattern of single nucleotide polymorphisms suggests incomplete lineage sorting of chloroplast genomes in kelp species. Our analysis of kelp chloroplast genomes shows that not only evolutionary information could be gleaned from sequence data. Concomitantly, those sequences can also tell us something about the ecological conditions which are required for species well‐being.  相似文献   
74.
Escherichia coli displays O antigens on the outer membrane that play an important role in bacterial interactions with the environment. The O antigens of enterohemorrhagic E. coli O104 and O5 contain a Galβ1-3GalNAc disaccharide at the reducing end of the repeating unit. Several other O antigens contain this disaccharide, which is identical to the mammalian O-glycan core 1 or the cancer-associated Thomsen-Friedenreich (TF) antigen. We identified the wbwC genes responsible for the synthesis of the disaccharide in E. coli serotypes O104 and O5. To functionally characterize WbwC, an acceptor substrate analog, GalNAcα-diphosphate-phenylundecyl, was synthesized. WbwC reaction products were isolated by high-pressure liquid chromatography and analyzed by mass spectrometry, nuclear magnetic resonance, galactosidase and O-glycanase digestion, and anti-TF antibody. The results clearly showed that the Galβ1-3GalNAcα linkage was synthesized, confirming WbwCECO104 and WbwCECO5 as UDP-Gal:GalNAcα-diphosphate-lipid β1,3-Gal-transferases. Sequence analysis revealed a conserved DxDD motif, and mutagenesis showed the importance of these Asp residues in catalysis. The purified enzymes require divalent cations (Mn2+) for activity and are specific for UDP-Gal and GalNAc-diphosphate lipid substrates. WbwC was inhibited by bis-imidazolium salts having aliphatic chains of 18 to 22 carbons. This work will help to elucidate mechanisms of polysaccharide synthesis in pathogenic bacteria and provide technology for vaccine synthesis.  相似文献   
75.
76.
Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs. We explored the SGSs of the closely related Calopteryx splendens and Calopteryx virgo within Finland and related the genetic patterns to characteristics of the sampling localities. We observed different SGSs for the two species. Genetic differentiation even within short distances in C. splendens suggests genetic drift as an important driver. However, we also observed indication of previous gene flow (revealed by a negative relationship between genetic differentiation and increasing potential connectivity of the landscape). Interestingly, genetic diversity of C. splendens was negatively related to density of C. virgo, suggesting that interspecific interactions influence the SGS of C. splendens. In contrast, genetic differentiation between C. virgo subpopulations was low and only exhibited relationships with latitude, pointing to high gene flow, colonization history and range margin effects as the drivers of SGS. The different SGSs of the two ecologically similar species caution indirect inferences of SGS based on ecologically similar surrogate species.  相似文献   
77.
The O antigens of outer membrane-bound lipopolysaccharides (LPS) in gram-negative bacteria are oligosaccharides consisting of repeating units with various structures and antigenicities. The O56 and O152 antigens of Escherichia coli both contain a Glc-beta1-3-GlcNAc linkage within the repeating unit. We have cloned and identified the genes (wfaP in O56 and wfgD in O152) within the two O-antigen gene clusters that encode glucosyltransferases involved in the synthesis of this linkage. A synthetic substrate analog of the natural acceptor substrate undecaprenol-pyrophosphate-lipid [GlcNAc-alpha-PO3-PO3-(CH2)11-O-phenyl] was used as an acceptor and UDP-Glc as a donor substrate to demonstrate that both wfgD and wfaP encode glucosyltransferases. Enzyme products from both glucosyltransferases were isolated by high-pressure liquid chromatography and analyzed by nuclear magnetic resonance. The spectra showed the expected Glc-beta1-3-GlcNAc linkage in the products, confirming that both WfaP and WfgD are forms of UDP-Glc: GlcNAc-pyrophosphate-lipid beta-1,3-glucosyltransferases. Both WfaP and WfgD have a DxD sequence, which is proposed to interact with phosphate groups of the nucleotide donor through the coordination of a metal cation, and a short hydrophobic sequence at the C terminus that may help to associate the enzymes with the inner membrane. We showed that the enzymes have similar properties and substrate recognition. They both require a divalent cation (Mn2+ or Mg2+) for activity, are deactivated by detergents, have a broad pH optimum, and require the pyrophosphate-sugar linkage in the acceptor substrate for full activity. Substrates lacking phosphate or pyrophosphate linked to GlcNAc were inactive. The length of the aliphatic chain of acceptor substrates also contributes to the activity.  相似文献   
78.
Principal response curves analysis (PRC) is widely applied to experimental multivariate longitudinal data for the study of time-dependent treatment effects on the multiple outcomes or response variables (RVs). Often, not all of the RVs included in such a study are affected by the treatment and RV-selection can be used to identify those RVs and so give a better estimate of the principal response. We propose four backward selection approaches, based on permutation testing, that differ in whether coefficient size is used or not in ranking the RVs. These methods are expected to give a more robust result than the use of a straightforward cut-off value for coefficient size. Performance of all methods is demonstrated in a simulation study using realistic data. The permutation testing approach that uses information on coefficient size of RVs speeds up the algorithm without affecting its performance. This most successful permutation testing approach removes roughly 95 % of the RVs that are unaffected by the treatment irrespective of the characteristics of the data set and, in the simulations, correctly identifies up to 97 % of RVs affected by the treatment.  相似文献   
79.
The diagnostic concepts of post‐traumatic stress disorder (PTSD) and other disorders specifically associated with stress have been intensively discussed among neuro‐ and social scientists, clinicians, epidemiologists, public health planners and humanitarian aid workers around the world. PTSD and adjustment disorder are among the most widely used diagnoses in mental health care worldwide. This paper describes proposals that aim to maximize clinical utility for the classification and grouping of disorders specifically associated with stress in the forthcoming 11th revision of the International Classification of Diseases (ICD‐11). Proposals include a narrower concept for PTSD that does not allow the diagnosis to be made based entirely on non‐specific symptoms; a new complex PTSD category that comprises three clusters of intra‐ and interpersonal symptoms in addition to core PTSD symptoms; a new diagnosis of prolonged grief disorder, used to describe patients that undergo an intensely painful, disabling, and abnormally persistent response to bereavement; a major revision of “adjustment disorder” involving increased specification of symptoms; and a conceptualization of “acute stress reaction” as a normal phenomenon that still may require clinical intervention. These proposals were developed with specific considerations given to clinical utility and global applicability in both low‐ and high‐income countries.  相似文献   
80.
Establishing trait–environment relationships has become routine in community ecology. Here, we demonstrate that the community weighted means correlation (CWM) and its parallel approach in linking trait variation to the environment, the species niche centroid correlation (SNC), have important shortcomings, arguing against their continuing application. Using mathematical derivations and simulations, we show that the two major issues are inconsistent parameter estimation and unacceptable significance rates when only the environment or only traits are structuring species distributions, but they themselves are not linked. We show how both CWM and SNC are related to the fourth‐corner correlation and propose to replace all by the Chessel fourth‐corner correlation, which is the fourth‐corner correlation divided by its maximum attainable value. We propose an appropriate hypothesis testing procedure that is not only unbiased but also has much greater statistical power in detecting trait–environmental relationships. We derive an additive framework in which trait variation is partitioned among and within communities, which can be then modeled against the environment. We finish by presenting a contrast between methods and an application of our proposed framework across 85 lake‐fish metacommunities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号