首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   42篇
  2021年   5篇
  2019年   7篇
  2018年   4篇
  2017年   8篇
  2016年   13篇
  2015年   29篇
  2014年   17篇
  2013年   28篇
  2012年   33篇
  2011年   31篇
  2010年   16篇
  2009年   13篇
  2008年   19篇
  2007年   26篇
  2006年   28篇
  2005年   22篇
  2004年   18篇
  2003年   23篇
  2002年   24篇
  2001年   16篇
  2000年   15篇
  1999年   16篇
  1998年   9篇
  1997年   10篇
  1996年   12篇
  1995年   6篇
  1994年   5篇
  1993年   12篇
  1992年   10篇
  1991年   18篇
  1990年   17篇
  1989年   12篇
  1988年   7篇
  1987年   9篇
  1986年   4篇
  1985年   8篇
  1983年   7篇
  1982年   5篇
  1979年   8篇
  1978年   9篇
  1976年   4篇
  1975年   9篇
  1973年   4篇
  1971年   10篇
  1970年   7篇
  1969年   3篇
  1968年   8篇
  1966年   6篇
  1870年   4篇
  1869年   3篇
排序方式: 共有671条查询结果,搜索用时 31 毫秒
41.
There is much interest in using magnetic resonance diffusion imaging to provide information on anatomical connectivity in the brain by measuring the diffusion of water in white matter tracts. Among the measures, the most commonly derived from diffusion data is fractional anisotropy (FA), which quantifies local tract directionality and integrity. Many multi-subject imaging studies are using FA images to localize brain changes related to development, degeneration and disease. In a recent paper, we presented a new approach, tract-based spatial statistics (TBSS), which aims to solve crucial issues of cross-subject data alignment, allowing localized cross-subject statistical analysis. This works by transforming the data from the centers of the tracts that are consistent across a study's subjects into a common space. In this protocol, we describe the MRI data acquisition and analysis protocols required for TBSS studies of localized change in brain connectivity across multiple subjects.  相似文献   
42.
43.
Abstract. It is highly probable that transgenic cultivars of sugar beet may influence wild beets in the seed-production-area of northern Italy. For this reason a survey of the local wild beet populations and their habitat characteristics was conducted in 1994/1995, i.e. before transgenic beets and their off spring could have become established. Wild beets (Beta vulgaris ssp. maritima) were found at 21 locations between Trieste and Cesenatico, as part of the natural littoral vegetation classified as Atriplicetum tatarici (Cakiletea maritimae) and Crithmetum (Crithmo-Staticetea). The analysis of phenotypic attributes leads to a division into three different sub-populations. Greenhouse studies on the morphology and life-cycle attributes demonstrated actual gene flow between conventional seed beet and the examined wild beet population.  相似文献   
44.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by the loss of alpha-motoneurons in the spinal cord followed by atrophy of skeletal muscles. SMA-determining candidate genes, SMN1 and SMN2, have been identified on human chromosome 5q. The corresponding SMN protein is expressed ubiquitously. It is coded by seven exons and contains conspicuous proline-rich motifs in its COOH-terminal third (exons 4, 5, and 6). Such motifs are known to bind to profilins (PFNs), small proteins engaged in the control of actin dynamics. We tested whether profilins interact with SMN via its polyproline stretches. Using the yeast two-hybrid system we show that profilins bind to SMN and that this binding depends on its proline-rich motifs. These results were confirmed by coimmunoprecipitation and by in vitro binding studies. Two PFN isoforms, I and II, are known, of which II is characteristic for central nervous system tissue. We show by in situ hybridization that both PFNs are highly expressed in mouse spinal cord and that PFN II is expressed predominantly in neurons. In motoneurons, the primary target of neurodegeneration in SMA, profilins are highly concentrated and colocalize with SMN in the cytoplasm of the cell body and in nuclear gems. Likewise, SMN and PFN I colocalize in gems of HeLa cells. Although SMN interacts with both profilin isoforms, binding of PFN II was stronger than of PFN I in all assays employed. Because the SMN genes are expressed ubiquitously, our findings suggest that the interaction of PFN II with SMN may be involved in neuron-specific effects of SMN mutations.  相似文献   
45.
46.
The heterolactic bacterium Oenococcus oeni ferments fructose by a mixed heterolactic/mannitol fermentation. For heterolactic fermentation of fructose, the phosphoketolase pathway is used. The excess NAD(P)H from the phosphoketolase pathway is reoxidized by fructose (yielding mannitol). It is shown here that, under conditions of C-limitation or decreased growth rates, fructose can be fermented by heterolactic fermentation yielding nearly stoichiometric amounts of lactate, ethanol and CO(2). Quantitative evaluation of NAD(P)H-producing (phosphoketolase pathway) and -reoxidizing (ethanol, mannitol and erythritol pathways) reactions demonstrated that at high growth rates or in batch cultures the ethanol pathway does not have sufficient capacity for NAD(P)H reoxidation, requiring additional use of the mannitol pathway to maintain the growth rate. In addition, insufficient capacities to reoxidize NAD(P)H causes inhibition of growth, whereas increased NAD(P)H reoxidation by electron acceptors such as pyruvate increases the growth rate.  相似文献   
47.
High-potential iron-sulfur protein (HiPIP) has recently been shown to function as a soluble mediator in photosynthetic electron transfer between the cytochrome bc1 complex and the reaction-center bacteriochlorophyll in some species of phototrophic proteobacteria, a role traditionally assigned to cytochrome c2. For those species that produce more than one high-potential electron carrier, it is unclear which protein functions in cyclic electron transfer and what characteristics determine reactivity. To establish how widespread the phenomenon of multiple electron donors might be, we have studied the electron transfer protein composition of a number of phototrophic proteobacterial species. Based upon the distribution of electron transfer proteins alone, we found that HiPIP is likely to be the electron carrier of choice in the purple sulfur bacteria in the families Chromatiaceae and Ectothiorhodospiraceae, but the majority of purple nonsulfur bacteria are likely to utilize cytochrome c2. We have identified several new species of phototrophic proteobacteria that may use HiPIP as electron donor and a few that may use cytochromes c other than c2. We have determined the amino acid sequences of 14 new HiPIPs and have compared their structures. There is a minimum of three sequence categories of HiPIP based upon major insertions and deletions which approximate the three families of phototrophic proteobacteria and each of them can be further subdivided prior to construction of a phylogenetic tree. The comparison of relationships based upon HiPIP and RNA revealed several discrepancies.  相似文献   
48.
Human UDP-GlcNAc: Galbeta1-3GalNAc- (GlcNAc to GalNAc) beta1,6-GlcNAc-transferase (C2GnT1) is a member of a group of beta6-GlcNAc-transferases that belongs to CAZy family 14. One of the striking features of these beta6-GlcNAc-transferases is the occurrence of nine completely conserved cysteine residues that are located throughout the catalytic domain. We have expressed the soluble catalytic domain of human C2GnT1 in insect cells, and isolated active enzyme as a secreted protein. beta-Mercaptoethanol (beta-ME) and dithiothreitol (DTT) were found to stimulate the enzyme activity up to 20-fold, indicating a requirement for a reduced sulfhydryl for activity. When the enzyme was subjected to nonreducing PAGE, the migration of the protein was identical to the migration in reducing gels, demonstrating the absence of intermolecular disulfide bonds. This suggested that the monomer is the active form of the enzyme. Sulfhydryl reagents such as 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) and N-ethylmaleimide (NEM) inactivated the enzyme, and the inactivation was partially prevented by prior addition of donor or acceptor substrate and by sulfhydryl reducing agents. We therefore investigated the role of all nine conserved cysteine residues in enzyme stability and activity by site-directed mutagenesis where individual cysteine residues were changed to serine. All of the mutants were expressed as soluble proteins. Seven of the Cys mutants were found to be inactive, while C100S and C217S mutants had 10% and 41% activity, respectively, when compared to the wild-type enzyme. Wild-type and C217S enzymes had similar K(M) and V(max) values for acceptor substrate Galbeta1-3GalNAcalpha-p-nitrophenyl (GGApnp), but the K(M) value for UDP-GlcNAc was higher for C217S than for the wild-type enzyme. In contrast to wild-type enzyme, C217S was not stimulated by reducing agents and was not inhibited by sulfhydryl specific reagents. These results suggest that Cys-217 is a free sulfhydryl in active wild-type enzyme and that Cys-217, although not required for activity, is in or near the active site of the protein. Since seven of the mutations were totally inactive, it is likely that these seven Cys residues play a role in maintaining an active conformation of soluble C2GnT1 by forming disulfide bonds. These bonds are only broken at high concentrations of disulfide reducing agents.  相似文献   
49.
50.
Carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1), the primordial carcinoembryonic Ag gene family member, is a transmembrane cell adhesion molecule expressed in leukocytes, epithelia, and blood vessel endothelia in humans and rodents. As a result of differential splicing, CEACAM1 occurs as several isoforms, the two major ones being CEACAM1-L and CEACAM1-S, that have long (L) or short (S) cytoplasmic domains, respectively. The L:S expression ratios vary in different cells and tissues. In addition to CEACAM1, human but not rodent cells express GPI-linked CEACAM members (CEACAM5-CEACAM8). We compared the expression patterns of CEACAM1-L, CEACAM1-S, CEACAM6, and CEACAM8 in purified populations of neutrophilic granulocytes, B lymphocytes, and T lymphocytes from rats, mice, and humans. Human granulocytes expressed CEACAM1, CEACAM6, and CEACAM8, whereas human B lymphocytes and T lymphocytes expressed only CEACAM1 and CEACAM6. Whereas granulocytes, B cells, and T cells from mice and rats expressed both CEACAM1-L and CEACAM1-S in ratios of 2.2-2.9:1, CEACAM1-S expression was totally lacking in human granulocytes, B cells, and T cells. Human leukocytes only expressed the L isoforms of CEACAM1. This suggests that the GPI-linked CEACAM members have functionally replaced CEACAM1-S in human leukocytes. Support for the replacement hypothesis was obtained from experiments in which the extracellular signal-regulated kinases (Erk)1/2 were activated by anti-CEACAM Abs. Thus, Abs against CEACAM1 activated Erk1/2 in rat granulocytes, but not in human granulocytes. Erk1/2 in human granulocytes could, however, be activated by Abs against CEACAM8. We demonstrated that CEACAM1 and CEACAM8 are physically associated in human granulocytes. The CEACAM1/CEACAM8 complex in human cells might accordingly play a similar role as CEACAM1-L/CEACAM1-S dimers known to occur in rat cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号