首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9349篇
  免费   759篇
  国内免费   673篇
  10781篇
  2024年   28篇
  2023年   126篇
  2022年   286篇
  2021年   494篇
  2020年   336篇
  2019年   386篇
  2018年   428篇
  2017年   273篇
  2016年   399篇
  2015年   587篇
  2014年   659篇
  2013年   654篇
  2012年   847篇
  2011年   781篇
  2010年   436篇
  2009年   383篇
  2008年   465篇
  2007年   372篇
  2006年   349篇
  2005年   298篇
  2004年   236篇
  2003年   181篇
  2002年   175篇
  2001年   179篇
  2000年   154篇
  1999年   168篇
  1998年   78篇
  1997年   83篇
  1996年   73篇
  1995年   89篇
  1994年   86篇
  1993年   58篇
  1992年   87篇
  1991年   77篇
  1990年   68篇
  1989年   44篇
  1988年   55篇
  1987年   36篇
  1986年   42篇
  1985年   53篇
  1984年   26篇
  1983年   17篇
  1982年   21篇
  1981年   11篇
  1979年   11篇
  1978年   14篇
  1977年   10篇
  1974年   11篇
  1969年   5篇
  1968年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Pan MH  Du J  Zhang JY  Huang MH  Li T  Cui HJ  Lu C 《DNA and cell biology》2011,30(10):763-770
The flap endonuclease-1 (FEN-1) gene is involved in DNA replication and repair, and it maintains genomic stability as well as the accuracy of DNA replication under normal growth conditions. However, FEN-1 also plays an important role in apoptosis and cancer development. We cloned the BmFEN-1 gene from Bombyx mori, which was 1343?bp in length and possessed an 1143?bp ORF (123-1266). It consists of seven introns and eight exons that encode a protein with 380 amino acids that has the typical XPG domain. The N-terminal motif is located at amino acids 95-105, and the proliferating cell nuclear antigen interaction motif is located at amino acids 337-344. RNA interference-mediated reduction of BmFEN-1 expression induced cell cycle arrest in S phase in BmE-SWU1?cells. These results suggest that BmFEN-1 can inhibit apoptosis and promote cell proliferation.  相似文献   
993.
Barrington's nucleus (BN), commonly known as the pontine micturition center, controls micturition and other visceral functions through projections to the spinal cord. In this study, we developed a rat brain slice preparation to determine the intrinsic and synaptic mechanisms regulating pre‐sympathetic output (PSO) and pre‐parasympathetic output (PPO) neurons in the BN using patch‐clamp recordings. The PSO and PPO neurons were retrogradely labeled by injecting fluorescent tracers into the intermediolateral region of the spinal cord at T13‐L1 and S1‐S2 levels, respectively. There were significantly more PPO than PSO neurons within the BN. The basal activity and membrane potential were significantly lower in PPO than in PSO neurons, and A‐type K+ currents were significantly larger in PPO than in PSO neurons. Blocking A‐type K+ channels increased the excitability more in PPO than in PSO neurons. Stimulting μ‐opioid receptors inhibited firing in both PPO and PSO neurons. The glutamatergic EPSC frequency was much lower, whereas the glycinergic IPSC frequency was much higher, in PPO than in PSO neurons. Although blocking GABAA receptors increased the excitability of both PSO and PPO neurons, blocking glycine receptors increased the firing activity of PPO neurons only. Furthermore, blocking ionotropic glutamate receptors decreased the excitability of PSO neurons but paradoxically increased the firing activity of PPO neurons by reducing glycinergic input. Our findings indicate that the membrane and synaptic properties of PSO and PPO neurons in the BN are distinctly different. This information improves our understanding of the neural circuitry and central mechanisms regulating the bladder and other visceral organs.  相似文献   
994.
Thermoplasmata is a widely distributed and ecologically important archaeal class in the phylum Euryarchaeota. Because few cultures and genomes are available, uncharacterized Thermoplasmata metabolisms remain unexplored. In this study, we obtained four medium- to high-quality archaeal metagenome-assembled genomes (MAGs) from the filamentous fragments of black-odorous aquatic sediments (Foshan, Guangdong, China). Based on their 16S rRNA gene and ribosomal protein phylogenies, the four MAGs belong to the previously unnamed Thermoplasmata UBA10834 clade. We propose that this clade (five reference genomes from the Genome Taxonomy Database (GTDB) and four MAGs from this study) be considered a new order, Candidatus Gimiplasmatales. Metabolic pathway reconstructions indicated that the Ca. Gimiplasmatales MAGs can biosynthesize isoprenoids and nucleotides de novo. Additionally, some taxa have genes for formaldehyde and acetate assimilation, and the Wood–Ljungdahl CO2-fixation pathway, indicating a mixotrophic lifestyle. Sulfur reduction, hydrogen metabolism, and arsenic detoxification pathways were predicted, indicating sulfur-, hydrogen-, and arsenic-transformation potentials. Comparative genomics indicated that the H4F Wood–Ljungdahl pathway of both Ca. Gimiplasmatales and Methanomassiliicoccales was likely obtained by the interdomain lateral gene transfer from the Firmicutes. Collectively, this study elucidates the taxonomic and potential metabolic diversity of the new order Ca. Gimiplasmatales and the evolution of this subgroup and its sister lineage Methanomassiliicoccales.  相似文献   
995.
ObjectivesHistone deacetylase 8 (HDAC8) is one of the class I HDAC family proteins, which participates in the neuronal disorders, parasitic/viral infections, tumorigenesis and many other biological processes. However, its potential function during female germ cell development has not yet been fully understood.Materials and methodsHDAC8‐targeting siRNA was microinjected into GV oocytes to deplete HDAC8. PCI‐34051 was used to inhibit the enzyme activity of HDAC8. Immunostaining, immunoblotting and fluorescence intensity quantification were applied to assess the effects of HDAC8 depletion or inhibition on the oocyte meiotic maturation, spindle/chromosome structure, γ‐tubulin dynamics and acetylation level of α‐tubulin.ResultsWe observed that HDAC8 was localized in the nucleus at GV stage and then translocated to the spindle apparatus from GVBD to M II stages in porcine oocytes. Depletion of HDAC8 led to the oocyte meiotic failure by showing the reduced polar body extrusion rate. In addition, depletion of HDAC8 resulted in aberrant spindle morphologies and misaligned chromosomes due to the defective recruitment of γ‐tubulin to the spindle poles. Notably, these meiotic defects were photocopied by inhibition of HDAC8 activity using its specific inhibitor PCI‐34051. However, inhibition of HDAC8 did not affect microtubule stability as assessed by the acetylation level of α‐tubulin.ConclusionsCollectively, our findings demonstrate that HDAC8 acts as a regulator of spindle assembly during porcine oocyte meiotic maturation.  相似文献   
996.
1985年我们采用间接免疫荧光法(IF法)检测出甲肝患者外周血白细胞中有甲肝抗原(HAAg)存在,继而又将HAAg阳性白细胞直接种入PLC/PRF/5细胞,分离到两株甲肝病毒(HAV)NJ—3株和H—1株。为了弄清白细胞所携带的病毒究竟仅为吸附吞饮,抑或能在其中复制增殖,我们将分离到的HAV用正常人血白细胞进行体外增殖试验,现将结果报告如下。  相似文献   
997.
郑坚  潘敬运 《生理学报》1991,43(4):330-337
The purpose of this study is to investigate the role of paraventricular nucleus of the hypothalamus (PVN) and alpha 1 adrenergic receptor of PVN in the pressor responses to stimulation of renal afferent nerve in alpha 1-chloralose-anesthetized cats with carotid sinoaortic denervation and vagotomy. The pressor response to stimulation of renal afferent nerve consisted of a primary and a second components. The primary component response was completely blocked while the second component was not blocked by autonomic blocking agents (hexomethonium and atropine). Bilateral lesions of PVN greatly attenuated the pressor response before and after autonomic blockade. Intracerebroventricular and PVN injection alpha 1, adrenergic antagonist (prazosin) significantly decreased in the pressor response to stimulation of renal afferent nerve. These results indicate that paraventricular nucleus of the hypothalamus and alpha 1 adrenergic receptors in central nervous system, especially in PVN, play an important role in the pressor responses to stimulation of renal afferent nerve.  相似文献   
998.
Pseudomonas aeruginosa is a major pathogen causing chronic pulmonary infections; for example, 80% of cystic fibrosis patients get infected by this bacterium as the disease progresses. Such chronic infections are challenging because P. aeruginosa exhibits high-level tolerance to antibiotics by forming biofilms (multicellular structures attached to surfaces), by entering dormancy and forming antibiotic tolerant persister cells, and by conversion to the mucoid phenotype. Recently, we reported that a synthetic quorum sensing inhibitor, (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8), can sensitize both planktonic and biofilm-associated persister cells of P. aeruginosa PAO1 to antibiotics at the concentrations non-inhibitory to its growth. In this study, we further characterized the effects of this compound on the mucoid strain P. aeruginosa PDO300. BF8 was found to reduce persistence during the growth of PDO300 and effectively kill the persister cells isolated from PDO300 cultures. In addition to planktonic cells, BF8 was also found to inhibit biofilm formation of PDO300 and reduce associated persistence. These findings broaden the activities of this class of compounds and indicate that BF8 also has other targets in P. aeruginosa in addition to quorum sensing.  相似文献   
999.
LY2228820 dimesylate is a highly selective small molecule inhibitor of p38α and p38β mitogen-activated protein kinases (MAPKs) that is currently under clinical investigation for human malignancies. p38 MAPK is implicated in a wide range of biological processes, in particular those that support tumorigenesis. One such process, angiogenesis, is required for tumor growth and metastasis, and many new cancer therapies are therefore directed against the tumor vasculature. Using an in vitro co-culture endothelial cord formation assay, a surrogate of angiogenesis, we investigated the role of p38 MAPK in growth factor- and tumor-driven angiogenesis using LY2228820 dimesylate treatment and by shRNA gene knockdown. p38 MAPK was activated in endothelial cells upon growth factor stimulation, with inhibition by LY2228820 dimesylate treatment causing a significant decrease in VEGF-, bFGF-, EGF-, and IL-6-induced endothelial cord formation and an even more dramatic decrease in tumor-driven cord formation. In addition to involvement in downstream cytokine signaling, p38 MAPK was important for VEGF, bFGF, EGF, IL-6, and other proangiogenic cytokine secretion in stromal and tumor cells. LY2228820 dimesylate results were substantiated using p38α MAPK-specific shRNA and shRNA against the downstream p38 MAPK effectors MAPKAPK-2 and HSP27. Using in vivo models of functional neoangiogenesis, LY2228820 dimesylate treatment reduced hemoglobin content in a plug assay and decreased VEGF-A-stimulated vascularization in a mouse ear model. Thus, p38α MAPK is implicated in tumor angiogenesis through direct tumoral effects and through reduction of proangiogenic cytokine secretion via the microenvironment.  相似文献   
1000.
Two classic animal behavior despair tests-the forced swimming test (FST) and the tail suspension test (TST) were used to evaluate antidepressant-like activity of a new chalcone compound, chalcone-1203 in mice. It was observed that chalcone-1203 at dose of 1, 5, and 10 mg/kg significantly reduced the immobility time in the FST and TST in mice 30 min after treatment. In addition, chalcone-1203 was found to exhibit significant oral activity in the FST in mice. It also produced a reduction in the ambulation in the open-field test in mice not previously habituated to the arena, but no effect in the locomotor activity in mice previously habituated to the open-field. The main monoamine neurotransmitters and their metabolites in mouse brain regions were also simultaneously determined by HPLC–ECD. It was found that chalcone-1203 significantly increased the concentrations of the main neurotransmitters 5-HT and NE in the hippocampus, hypothalamus and cortex. Chalcone-1203 also significantly reduced the ratio of 5-HIAA/5-HT in the hippocampus and cortex, shown down 5-HT metabolism compared with mice treated with stress vehicle. In conclusion, chalcone-1203 produced significant antidepressant-like activity, and the mechanism of action may be due to increased 5-HT and NE in the mouse hippocampus and cortex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号