首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   18篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   8篇
  2013年   19篇
  2012年   25篇
  2011年   10篇
  2010年   6篇
  2009年   7篇
  2008年   14篇
  2007年   13篇
  2006年   9篇
  2005年   11篇
  2004年   12篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  2000年   7篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1982年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
41.
Evidence for demand-regulation of ribosome accumulation in E coli   总被引:2,自引:0,他引:2  
R. Mikkola  C.G. Kurland 《Biochimie》1991,73(12):1551-1556
We have determined the relative concentrations of ribosomes accumulated under different growth conditions for a number of translational mutants as well as for some natural isolates of Escherichia coli. The mutants are a tRNA modification mutant (miaA), a streptomycin resistant (SmR) and a streptomycin pseudodependent (SmP) mutant as well as two ribosome ambiguity (ram) mutants. The natural isolates used in this study are known to function with submaximal ribosome kinetics. The data show that for all the ribosome mutants the concentration of ribosomes relative to that in wild type bacteria increases when the growth rate decreases. A small increase is also seen in the natural isolates. In contrast, the miaA mutant shows no increase in ribosome concentration under the same slow growth conditions. The results suggest that bacteria with kinetically impaired ribosomes can to some extent increase the number of ribosomes accumulated under poor growth conditions in order to compensate for their slower function. We use this observation to explain in part how bacteria growing in natural environments can escape the strong selection for maximized growth rates and for optimized ribosomes that are characteristic of laboratory strains.  相似文献   
42.
The emetic toxin of Bacillus cereus, found to cause immobilization of spermatozoa and swelling of their mitochondria, was purified and its structure found to be identical to the earlier known toxin cereulide. It increased the conductance in black-lipid membranes in KCl solutions in an ionophore-like manner. It formed adducts with K+, Na+, and NH4+ but the conductance was highly selective for K+ in relation to Na+ and H+ (three orders of magnitude). The increase in the kinetics of conductance indicated a stoichiometric ratio between the cereulide and K+. Its ionophoretic properties are thus similar to those of valinomycin. In addition, its effects on rat liver mitochondria were similar: it stimulated swelling and respiration in respiring mitochondria in the presence but not in the absence of K+, it reduced the transmembrane potential under these conditions. In nonrespiring mitochondria, swelling was seen in KNO3- but not in NaNO3-containing media, less in acetate. In NaNO3 media addition of the cereulide caused a transient diffusion potential which was reduced by adding K+. It is concluded that the toxic effects of cereulide are due to it being a K+ ionophore.  相似文献   
43.
44.
The mammary gland develops from the surface ectoderm during embryogenesis and proceeds through morphological phases defined as placode, hillock, bud, and bulb stages followed by branching morphogenesis. During this early morphogenesis, the mammary bud undergoes an invagination process where the thickened bud initially protrudes above the surface epithelium and then transforms to a bulb and sinks into the underlying mesenchyme. The signaling pathways regulating the early morphogenetic steps have been identified to some extent, but the underlying cellular mechanisms remain ill defined. Here, we use 3D and 4D confocal microscopy to show that the early growth of the mammary rudiment is accomplished by migration-driven cell influx, with minor contributions of cell hypertrophy and proliferation. We delineate a hitherto undescribed invagination mechanism driven by thin, elongated keratinocytes—ring cells—that form a contractile rim around the mammary bud and likely exert force via the actomyosin network. Furthermore, we show that conditional deletion of nonmuscle myosin IIA (NMIIA) impairs invagination, resulting in abnormal mammary bud shape.  相似文献   
45.
The present study specifically aimed at preparing and characterizing semidilute binary polymer mixtures of alginate and chitlac which might find an application in the field of cell encapsulation. A polyanion, alginate, and a polycation, a lactose-modified chitosan, were mixed under physiological conditions (pH 7.4 and NaCl 0.15) and at a semidilute concentration avoiding associative phase separation. The mutual solubility was found to be dependent on the charge screening effect of the added NaCl salt, being prevented below 0.05 M NaCl. A comparison with the behavior of the polyanion (alginate) under the same experimental conditions revealed that both the viscosity and the relaxation times of the binary polymer solutions are strongly affected by the presence of the polycation. In particular, the occurrence of electrostatic interactions between the two oppositely charged polysaccharides led to a synergistic effect on the zero-shear viscosity of the solution, which showed a 4.2-fold increase with respect to that of the main component of the solution, i.e., alginate. Moreover, the relaxation time, calculated as the reciprocal of the critical share rate, markedly increased upon reducing the alginate fraction in the binary polysaccharide solution. However, the formation of the soluble complexes and the synergistic effect are reduced upon increasing the concentration of the 1:1 electrolyte. By containing a gel-forming polyanion (alginate, e.g., with Ca(2+) ions) and a bioactive polycation (chitlac, bearing a beta-linked D-galactose), the present system can be regarded as a first step toward the development of biologically active scaffold from polysaccharide mixtures.  相似文献   
46.
47.
The journey of developing hematopoietic stem cells   总被引:6,自引:0,他引:6  
Hematopoietic stem cells (HSCs) develop during embryogenesis in a complex process that involves multiple anatomical sites. Once HSC precursors have been specified from mesoderm, they have to mature into functional HSCs and undergo self-renewing divisions to generate a pool of HSCs. During this process, developing HSCs migrate through various embryonic niches, which provide signals for their establishment and the conservation of their self-renewal ability. These processes have to be recapitulated to generate HSCs from embryonic stem cells. Elucidating the interactions between developing HSCs and their niches should facilitate the generation and expansion of HSCs in vitro to exploit their clinical potential.  相似文献   
48.
The diazotrophic communities in a rice paddy field were characterized by a molecular polyphasic approach including DNA/RNA-DGGE fingerprinting, real time RT-PCR analysis of nifH gene and the measurement of nitrogen fixation activities. The investigation was performed on a diurnal cycle and comparisons were made between bulk and rhizosphere / root soil as well as between fertilized / unfertilized soils. Real time RT-PCR showed no significant difference in the total quantity of nifH expression under the conditions investigated. The functional diversity and dynamics of the nifH gene expressing diazotroph community investigated using RT-PCR-DGGE revealed high diurnal variations, as well as variation between different soil types. Most of the sequence types recovered from the DGGE gels and clone libraries clustered within nifH Cluster I and III (65 different nifH sequences in total). Sequence types most similar to Azoarcus spp., Metylococcus spp., Rhizobium spp., Methylocystis spp., Desulfovibrio spp., Geobacter spp., Chlorobium spp., were abundant and indicate that these species may be responsible for the observed diurnal variation in the diazotrophic community structure in these rice field samples. Previously described diazotrophic cyanobacterial genera in rice fields, such as Nostoc and Cyanothece, were present in the samples but not detectable in RT-PCR assays.  相似文献   
49.
50.

Background

It has been proposed that the enzymes of nucleotide biosynthesis may be compartmentalized or concentrated in a structure affecting the organization of newly replicated DNA. Here we have investigated the effect of changes in ribonucleotide reductase (RNR) activity on chromosome replication and organization of replication forks in Escherichia coli.

Methodology/Principal Findings

Reduced concentrations of deoxyribonucleotides (dNTPs) obtained by reducing the activity of wild type RNR by treatment with hydroxyurea or by mutation, resulted in a lengthening of the replication period. The replication fork speed was found to be gradually reduced proportionately to moderate reductions in nucleotide availability. Cells with highly extended C periods showed a “delay” in cell division i.e. had a higher cell mass. Visualization of SeqA structures by immunofluorescence indicated no change in organization of the new DNA upon moderate limitation of RNR activity. Severe nucleotide limitation led to replication fork stalling and reversal. Well defined SeqA structures were not found in situations of extensive replication fork repair. In cells with stalled forks obtained by UV irradiation, considerable DNA compaction was observed, possibly indicating a reorganization of the DNA into a “repair structure” during the initial phase of the SOS response.

Conclusion/Significance

The results indicate that the replication fork is slowed down in a controlled manner during moderate nucleotide depletion and that a change in the activity of RNR does not lead to a change in the organization of newly replicated DNA. Control of cell division but not control of initiation was affected by the changes in replication elongation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号