首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1972年   4篇
  1967年   2篇
  1966年   2篇
  1961年   2篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
11.
12.
Thirty-two 2-deoxygalactose-resistant mutants with DNA amplifications were isolated from Streptomyces lividans 66 strains carrying plasmid pMT664, which carries an agarase gene (dagA) and IS466. Thirty-one of the mutants carried amplified DNA sequences from a 70 kb region about 300 kb from one end of the linear chromosome in this species. In 28 of the mutants, all the wild-type sequences between the amplified region and the start of the 30 kb inverted repeat that forms the chromosome end were deleted. Thus, there appeared to be loss of one chromosome end and its replacement by the DNA amplification. In some mutants there amplification of a previously characterised 5.7 kb sequence that lies about 600 kb from the other chromosome end was also noted.  相似文献   
13.
Ohne ZusammenfassungMeinem Vater, Prof. Dr.W. Lamprecht, zu seinem 80. Geburtstag gewidmet.  相似文献   
14.
Highlights? Unflipped AP site stabilized by helix-hairpin-helix DNA glycosylase homolog Mag2 ? Nonenzymatic AP site recognition and DNA sculpting ? Sculpting of DNA conformation enhances substrate transfer between proteins  相似文献   
15.
The chronological life span of yeast, the survival of stationary (G0) cells over time, provides a model for investigating certain of the factors that may influence the aging of non-dividing cells and tissues in higher organisms. This study measured the effects of defined defects in the base excision repair (BER) system for DNA repair on this life span. Stationary yeast survives longer when it is pre-grown on respiratory, as compared to fermentative (glucose), media. It is also less susceptible to viability loss as the result of defects in DNA glycosylase/AP lyases (Ogg1p, Ntg1p, Ntg2p), apurinic/apyrimidinic (AP) endonucleases (Apn1p, Apn2p) and monofunctional DNA glycosylase (Mag1p). Whereas single BER glycosylase/AP lyase defects exerted little influence over such optimized G0 survival, this survival was severely shortened with the loss of two or more such enzymes. Equally, the apn1delta and apn2delta single gene deletes survived as well as the wild type, whereas a apn1delta apn2delta double mutant totally lacking in any AP endonuclease activity survived poorly. Both this shortened G0 survival and the enhanced mutagenicity of apn1delta apn2delta cells were however rescued by the over-expression of either Apn1p or Apn2p. The results highlight the vital importance of BER in the prevention of mutation accumulation and the attainment of the full yeast chronological life span. They also reveal an appreciable overlap in the G0 maintenance functions of the different BER DNA glycosylases and AP endonucleases.  相似文献   
16.
3-methyladenine DNA glycosylases initiate repair of cytotoxic and promutagenic alkylated bases in DNA. We demonstrate by comparative modelling that Bacillus cereus AlkD belongs to a new, fifth, structural superfamily of DNA glycosylases with an alpha-alpha superhelix fold comprising six HEAT-like repeats. The structure reveals a wide, positively charged groove, including a putative base recognition pocket. This groove appears to be suitable for the accommodation of double-stranded DNA with a flipped-out alkylated base. Site-specific mutagenesis within the recognition pocket identified several residues essential for enzyme activity. The results suggest that the aromatic side chain of a tryptophan residue recognizes electron-deficient alkylated bases through stacking interactions, while an interacting aspartate-arginine pair is essential for removal of the damaged base. A structural model of AlkD bound to DNA with a flipped-out purine moiety gives insight into the catalytic machinery for this new class of DNA glycosylases.  相似文献   
17.
7,8-Dihydro-8-oxoguanine (8oxoG) is a major mutagenic base lesion formed when reactive oxygen species react with guanine in DNA. The human 8oxoG DNA glycosylase (hOgg1) recognizes and initiates repair of 8oxoG. hOgg1 is acknowledged as a bifunctional DNA glycosylase catalyzing removal of the damaged base followed by cleavage of the backbone of the intermediate abasic DNA (AP lyase/β-elimination). When acting on 8oxoG-containing DNA, these two steps in the hOgg1 catalysis are considered coupled, with Lys249 implicated as a key residue. However, several lines of evidence point to a concurrent and independent monofunctional hydrolysis of the N-glycosylic bond being the in?vivo relevant reaction mode of hOgg1. Here, we present biochemical and structural evidence for the monofunctional mode of hOgg1 by design of separation-of-function mutants. Asp268 is identified as the catalytic residue, while Lys249 appears critical for the specific recognition and final alignment of 8oxoG during the hydrolysis reaction.  相似文献   
18.
Summary We report the first use of amnion epithelium for prenatal diagnosis. Prenatal diagnosis of recessive epidermolysis bullosa atrophicans generalisata gravis Herlitz type can at present be achieved with safety by detailed ultrastructural analysis of fetal skin. Because of the close developmental origin of amnion and skin, which has been elucidated by the recent development of antiamnion antibodies against dermo-epidermal junction antigens and by their abnormal binding in epidermolysis bullosa skin, there is presumably some morphological relationship between amnion epithelium and skin. In a comparative study of extra-embryonic tissues, we found ultrastructurally complete hemidesmosomes in all 24 investigated normal amnion samples from gestational weeks 15–27, but not in 7 reflected chorion samples from weeks 16–22. The results of placental chorion samples were not reliable. Amnion of 5 fetuses affected with epidermolysis bullosa atrophicans generalisata gravis revealed only hypoplastic hemidesmosomes, the same defect as in the respective skin. In a recent case where unfortunately only non-skin material was available, a positive prenatal diagnosis of epidermolysis bullosa atrophicans gravis Herlitz was performed from the amnion material. The diagnosis was confirmed by investigation of the fetal skin after termination. Investigation of amnion membranes is therefore an alternative for prenatal diagnosis of epidermolysis bullosa atrophicans gravis Herlitz in certain cases. The possibility and limitations of the general use of amnion for prenatal diagnosis are discussed.  相似文献   
19.
2-Oxoglutarate (2OG) dependent dioxygenases are ubiquitous iron containing enzymes that couple substrate oxidation to the conversion of 2OG to succinate and carbon dioxide. They participate in a wide range of biological processes including collagen biosynthesis, fatty acid metabolism, hypoxic sensing and demethylation of nucleic acids and histones. Although substantial progress has been made in elucidating their function, the role of many 2OG dioxygenases remains enigmatic. Here we have studied the 2OG and iron (Fe(II)) dependent dioxygenase Ofd2 in Schizosaccharomyces pombe, a member of the AlkB subfamily of dioxygenases. We show that decarboxylation of 2OG by recombinant Ofd2 is dependent on Fe(II) and a histidine residue predicted to be involved in Fe(II) coordination. The decarboxylase activity of Ofd2 is stimulated by histones, and H2A has the strongest effect. Ofd2 interacts with all four core histones, however, only very weakly with H4. Our results define a new subclass of AlkB proteins interacting with histones, which also might comprise some of the human AlkB homologs with unknown function.  相似文献   
20.
Abasic (AP) sites are formed spontaneously and are inevitably intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair initiated by DNA glycosylases performing β,δ-elimination cleavage of the AP sites has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites in Schizosaccharomyces pombe that is initiated by a bifunctional DNA glycosylase, Nth1 and followed by cleavage of the baseless sugar residue by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap. A fission yeast double mutant of the major AP endonuclease Apn2 and Tdp1 shows synergistic increase in MMS sensitivity, substantiating that Apn2 and Tdp1 process the same substrate. These results add new knowledge to the complex cellular response to AP sites, which could be exploited in chemotherapy where synthetic lethality is a key strategy of treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号