首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3531篇
  免费   298篇
  国内免费   2篇
  3831篇
  2022年   30篇
  2021年   40篇
  2020年   44篇
  2019年   32篇
  2018年   40篇
  2017年   37篇
  2016年   90篇
  2015年   137篇
  2014年   158篇
  2013年   220篇
  2012年   268篇
  2011年   238篇
  2010年   148篇
  2009年   126篇
  2008年   205篇
  2007年   205篇
  2006年   195篇
  2005年   191篇
  2004年   179篇
  2003年   157篇
  2002年   161篇
  2001年   40篇
  2000年   41篇
  1999年   45篇
  1998年   42篇
  1997年   42篇
  1996年   25篇
  1995年   23篇
  1994年   35篇
  1993年   31篇
  1992年   43篇
  1991年   28篇
  1990年   26篇
  1989年   27篇
  1988年   29篇
  1987年   22篇
  1986年   22篇
  1985年   23篇
  1984年   29篇
  1983年   22篇
  1982年   27篇
  1981年   22篇
  1980年   24篇
  1979年   20篇
  1978年   22篇
  1977年   25篇
  1976年   25篇
  1975年   20篇
  1974年   27篇
  1972年   18篇
排序方式: 共有3831条查询结果,搜索用时 9 毫秒
81.
The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the high cost of brain development and maintenance is predicted to constrain adaptive brain size evolution (the expensive tissue hypothesis, ETH). Here, we test the ETH in a teleost fish with predominant female mating competition (reversed sex roles) and male pregnancy, the pacific seaweed pipefish Syngnathus schlegeli. The relative size of the brain and other energetically expensive organs (kidney, liver, heart, gut, visceral fat, and ovary/testis) was compared among three groups: pregnant males, nonpregnant males and egg producing females. Brood size in pregnant males was unrelated to brain size or the size of any other organ, whereas positive relationships were found between ovary size, kidney size, and liver size in females. Moreover, we found that the size of energetically expensive organs (brain, heart, gut, kidney, and liver) as well as the amount of visceral fat did not differ between pregnant and nonpregnant males. However, we found marked differences in relative size of the expensive organs between sexes. Females had larger liver and kidney than males, whereas males stored more visceral fat than females. Furthermore, in females we found a negative correlation between brain size and the amount of visceral fat, whereas in males, a positive trend between brain size and both liver and heart size was found. These results suggest that, while the majority of variation in the size of various expensive organs in this species likely reflects that individuals in good condition can afford to allocate resources to several organs, the cost of the expensive brain was visible in the visceral fat content of females, possibly due to the high costs associated with female egg production.  相似文献   
82.
Correlative species distribution models have long been the predominant approach to predict species’ range responses to climate change. Recently, the use of dynamic models is increasingly advocated for because these models better represent the main processes involved in range shifts and also simulate transient dynamics. A well‐known problem with the application of these models is the lack of data for estimating necessary parameters of demographic and dispersal processes. However, what has been hardly considered so far is the fact that simulating transient dynamics potentially implies additional uncertainty arising from our ignorance of short‐term climate variability in future climatic trends. Here, we use endemic mountain plants of Austria as a case study to assess how the integration of decadal variability in future climate affects outcomes of dynamic range models as compared to projected long‐term trends and uncertainty in demographic and dispersal parameters. We do so by contrasting simulations of a so‐called hybrid model run under fluctuating climatic conditions with those based on a linear interpolation of climatic conditions between current values and those predicted for the end of the 21st century. We find that accounting for short‐term climate variability modifies model results nearly as differences in projected long‐term trends and much more than uncertainty in demographic/dispersal parameters. In particular, range loss and extinction rates are much higher when simulations are run under fluctuating conditions. These results highlight the importance of considering the appropriate temporal resolution when parameterizing and applying range‐dynamic models, and hybrid models in particular. In case of our endemic mountain plants, we hypothesize that smoothed linear time series deliver more reliable results because these long‐lived species are primarily responsive to long‐term climate averages.  相似文献   
83.
Retinal ischemia and reperfusion injuries (R‐IRI) damage neuronal tissue permanently. Recently, we demonstrated that Argon exerts anti‐apoptotic and protective properties. The molecular mechanism remains unclear. We hypothesized that Argon inhalation exert neuroprotective effects in rats retinal ganglion cells (RGC) via an ERK‐1/2 dependent regulation of heat‐shock proteins. Inhalation of Argon (75 Vol%) was performed after R‐IRI on the rats′ left eyes for 1 h immediately or with delay. Retinal tissue was harvested after 24 h to analyze mRNA and protein expression of heat‐shock proteins ?70, ?90 and heme‐oxygenase‐1, mitogen‐activated protein kinases (p38, JNK, ERK‐1/2) and histological changes. To analyze ERK dependent effects, the ERK inhibitor PD98059 was applicated prior to Argon inhalation. RGC count was analyzed 7 days after injury. Statistics were performed using anova . Argon significantly reduced the R‐IRI‐affected heat‐shock protein expression (p < 0.05). While Argon significantly induced ERK‐1/2 expression (p < 0.001), inhibition of ERK‐1/2 before Argon inhalation resulted in significantly lower vital RGCs (p < 0.01) and increase in heme‐oxygenase‐1 (p < 0.05). R‐IRI‐induced RGC loss was reduced by Argon inhalation (p < 0.001). Immunohistochemistry suggested ERK‐1/2 activation in Müller cells. We conclude, that Argon treatment protects R‐IRI‐induced apoptotic loss of RGC via an ERK‐1/2 dependent regulation of heme‐oxygenase‐1.

  相似文献   

84.
Summary Alkaline phosphatase (AP) is secreted into the medium when the carboxy-terminal 25 amino acids are replaced by the 60 amino acid carboxy-terminal signal peptide (HlyAs) ofEscherichia coli haemolysin (HlyA). Secretion of the AP-HlyAs fusion protein is dependent on HlyB and HlyD but independent of SecA and SecY. The efficiency of secretion by HlyB/HlyD is decreased when AP carries its own N-terminal signal peptide. Translocation of this fusion protein into the periplasm is not observed even in the absence of HlyB/HlyD. The failure of the Sec export machinery to transport the latter protein into the periplasm seems to be due in part to the loss of the carboxy-terminal sequence of AP since even AP derivatives which do not carry the HlyA signal peptide but lack the 25 C-terminal amino acids of AP are localized in the membrane but not translocated into the periplasm.  相似文献   
85.
The nitrogen content, distribution, and amino acid composition of protein material were determined in wood and lignin of Fagus sylvatica. The data indicated that the nitrogen originated from hydroxyproline-rich cell wall glycoprotein, about half of which may be bound to the lignin polymer. The implications for lignocellulose biodegradation are discussed.  相似文献   
86.
87.
Current vaccination strategies mainly target antigens into the phagosomal, major histocompatibility complex class II antigen-processing pathway and thus lead predominantly to humoral immune responses. The elicitation of cytotoxic T-cell responses instead requires introduction of antigens into the cytosol of professional antigen-presenting cells (APCs). The intracellular bacterium Listeria monocytogenes gains access to the host cell cytosol by means of a cytolysin, listeriolysin O. Vaccine researchers have successfully employed listeriolysin in novel vaccination approaches to provide access to the cytosol of professional APCs for purified protein antigens, attenuated bacterial vaccine strains, DNA vaccines and liposome contents.  相似文献   
88.
89.
After stimulation with agonist, G protein coupled receptors (GPCR) undergo conformational changes that allow activation of G proteins to transduce the signal, followed by phosphorylation by kinases and arrestin binding to promote receptor internalization. Actual paradigm, based on a study of GPCR-A/rhodopsin family, suggests that a network of interactions between conserved residues located in transmembrane (TM) domains (mainly TM3, TM6 and TM7) is involved in the molecular switch leading to GPCR activation.

We evaluated in CHO cells expressing the VPAC1 receptor the role of the third transmembrane helix in agonist signalling by point mutation into Ala of the residues highly conserved in the secretin-family of receptors: Y224, N229, F230, W232, E236, G237, Y239, L240. N229A VPAC1 mutant was characterized by a decrease in both potency and efficacy of VIP stimulated adenylate cyclase activity, by the absence of agonist stimulated [Ca2+]i increase, by a preserved receptor recognition of agonists and antagonist and by a preserved sensitivity to GTP suggesting the importance of that residue for efficient G protein activation. N229D mutant was not expressed at the membrane, and the N229Q with a conserved mutation was less affected than the A mutant. Agonist stimulated phosphorylation and internalization of N229A and N229Q VPAC1 were unaffected. However, the re-expression of internalized mutant receptors, but not that of the wild type receptor, was rapidly reversed after VIP washing. Receptor phosphorylation, internalization and re-expression may be thus dissociated from G protein activation and linked to another active conformation that may influence its trafficking.

Mutation of that conserved amino acid in VPAC2 could be investigated only by a conservative mutation (N216Q) and led to a receptor with a low VIP stimulation of adenylate cyclase, receptor phosphorylation and internalization. This indicated the importance of the conserved N residue in the TM3 of that family of receptors.  相似文献   

90.
The major risk factors for non-alcoholic fatty liver disease (NAFLD) are obesity, insulin resistance and dyslipidemia. The cause for progression from the steatosis stage to the inflammatory condition (non-alcoholic steatohepatitis (NASH)) remains elusive at present. Aim of this study was to test whether the different stages of NAFLD as well as the associated metabolic abnormalities can be recreated in time in an overfed mouse model and study the mechanisms underlying the transition from steatosis to NASH.Male C57Bl/6J mice were subjected to continuous intragastric overfeeding with a high-fat liquid diet (HFLD) for different time periods. Mice fed a solid high-fat diet (HFD) ad libitum served as controls. Liver histology and metabolic characteristics of liver, white adipose tisue (WAT) and plasma were studied.Both HFD-fed and HFLD-overfed mice initially developed liver steatosis, but only the latter progressed in time to NASH. NASH coincided with obesity, hyperinsulinemia, loss of liver glycogen and hepatic endoplasmatic reticulum stress. Peroxisome proliferator-activated receptor γ (Pparγ), fibroblast growth factor 21 (Fgf21), fatty acid binding protein (Fabp) and fatty acid translocase (CD36) were induced exclusively in the livers of the HFLD-overfed mice. Inflammation, reduced adiponectin expression and altered expression of genes that influence adipogenic capacity were only observed in WAT of HFLD-overfed mice.In conclusion: this dietary mouse model displays the different stages and the metabolic settings often found in human NAFLD. Lipotoxicity due to compromised adipose tissue function is likely associated with the progression to NASH, but whether this is cause or consequence remains to be established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号