首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1585篇
  免费   118篇
  国内免费   1篇
  1704篇
  2023年   7篇
  2022年   11篇
  2021年   30篇
  2020年   16篇
  2019年   19篇
  2018年   19篇
  2017年   23篇
  2016年   36篇
  2015年   65篇
  2014年   88篇
  2013年   80篇
  2012年   122篇
  2011年   123篇
  2010年   89篇
  2009年   75篇
  2008年   117篇
  2007年   105篇
  2006年   101篇
  2005年   84篇
  2004年   87篇
  2003年   86篇
  2002年   78篇
  2001年   26篇
  2000年   22篇
  1999年   20篇
  1998年   21篇
  1997年   19篇
  1996年   16篇
  1995年   16篇
  1994年   10篇
  1993年   10篇
  1992年   10篇
  1991年   11篇
  1990年   11篇
  1989年   9篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1981年   2篇
  1978年   2篇
  1976年   2篇
  1964年   2篇
  1959年   2篇
  1957年   1篇
  1955年   1篇
  1954年   1篇
  1925年   1篇
  1919年   1篇
排序方式: 共有1704条查询结果,搜索用时 15 毫秒
991.
Global change, especially land‐use intensification, affects human well‐being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real‐world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land‐use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land‐use objectives. We found that indirect land‐use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land‐use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land‐use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast‐growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.  相似文献   
992.
B chromosomes are additional, usually unstable constituents of the genome of many organisms. Their origin, however, is often unclear and their evolutionary relevance is not well understood. They may range from being deleterious to neutral or even beneficial. We have followed the genetic fate of B chromosomes in the asexual, all-female fish Poecilia formosa over eight generations. In this species, B chromosomes come in the form of one to three tiny microchromosomes derived from males of the host species that serve as sperm donors for this gynogenetic species. All microchromosomes have centromeric heterochromatin but usually only one has a telomere. Such microchromosomes are stably inherited, while the telomereless are prone to be lost in both the soma and germline. In some cases the stable microchromosome carries a functional gene lending support to the hypothesis that the B chromosomes in P. formosa could increase the genetic diversity of the clonal lineage in this ameiotic organism and to some degree counteract the genomic decay that is supposed to be connected with the lack of recombination.  相似文献   
993.
Spatial and temporal modulation of intracellular Ca2+ fluxes controls the cellular response of B lymphocytes to antigen stimulation. Herein, we identify the hematopoietic adaptor protein Dok-3 (downstream of kinase-3) as a key component of negative feedback regulation in Ca2+ signaling from the B-cell antigen receptor. Dok-3 localizes at the inner leaflet of the plasma membrane and is a major substrate for activated Src family kinase Lyn. Phosphorylated Dok-3 inhibits antigen receptor-induced Ca2+ elevation by recruiting cytosolic Grb2, which acts at this location as a negative regulator of Bruton's tyrosine kinase. This leads to diminished activation of phospholipase C-gamma2 and reduced production of soluble inositol trisphosphate. Hence, the Dok-3/Grb2 module is a membrane-associated signaling organizer, which orchestrates the interaction efficiency of Ca2+-mobilizing enzymes.  相似文献   
994.
Enzymes are becoming increasingly important tools for synthesizing and modifying fine and bulk chemicals. The availability of biocatalysts which fulfil the requirements of industrial processes is often limited. Recruiting suited enzymes from natural (e.g. metagenomes) and artificial (e.g. directed evolution) biodiversity is based on screening libraries of microbial clones expressing enzyme variants. However, exploring the complex diversity of such libraries needs efficient screening methods. Overcoming the "screening bottleneck" requires rapid high throughput technology allowing the analysis of a large diversity of different enzymes and applying different screening conditions. Facing these facts an efficient and cost effective method for high throughput screening of large enzyme libraries at the colony level was developed. Therefore, ordered high density micro-colony arrays were combined with optical sensor technology and automated image analysis. The system generally allows the simultaneous monitoring of enzyme activities reflected by up to 7000 micro-colonies spotted on a filter in the size of a micro-titer plate. A developed replica option also allows the analysis of clones under varying external conditions. The method was verified by a model screening using esterases and was proved to provide reliable enzyme activity measurements within single micro-colonies allowing the discrimination of activity differences in the range of 10-20%.  相似文献   
995.
Burgert I  Eder M  Gierlinger N  Fratzl P 《Planta》2007,226(4):981-987
Plants are able to pre-stress their tissues in order to actuate their organs. Here, we demonstrate with two tissue types of the secondary xylem of conifers (normal wood and compression wood of spruce (Picea abies)) that either tensile or compressive stresses can develop in the longitudinal direction during the swelling of the cell wall. This dramatic difference appears to be due mostly to differences in cell geometry and cellulose fibril orientation. A mechanical model was developed to demonstrate swelling experiments with the help of sodium iodide experiments. The reversal of longitudinal extension can be predicted, based on the orientation of the (nearly inextensible) cellulose fibrils and the shape of the cell.  相似文献   
996.
Neurochemical Research - Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After its release from presynaptic nerve terminals, glutamate is quickly removed...  相似文献   
997.
Root‐associated mycobiomes (RAMs) link plant and soil ecological processes, thereby supporting ecosystem functions. Understanding the forces that govern the assembly of RAMs is key to sustainable ecosystem management. Here, we dissected RAMs according to functional guilds and combined phylogenetic and multivariate analyses to distinguish and quantify the forces driving RAM assembly processes. Across large biogeographic scales (>1,000 km) in temperate forests (>100 plots), RAMs were taxonomically highly distinct but composed of a stable trophic structure encompassing symbiotrophic, ectomycorrhizal (55%), saprotrophic (7%), endotrophic (3%) and pathotrophic fungi (<1%). Taxonomic community composition of RAMs is explained by abiotic factors, forest management intensity, dominant tree family (Fagaceae, Pinaceae) and root resource traits. Local RAM assemblies are phylogenetically clustered, indicating stronger habitat filtering on roots in dry, acid soils and in conifer stands than in other forest types. The local assembly of ectomycorrhizal communities is driven by forest management intensity. At larger scales, root resource traits and soil pH shift the assembly process of ectomycorrhizal fungi from deterministic to neutral. Neutral or weak deterministic assembly processes are prevalent in saprotrophic and endophytic guilds. The remarkable consistency of the trophic composition of the RAMs suggests that temperate forests attract fungal assemblages that afford functional resilience under the current range of climatic and edaphic conditions. At local scales, the filtering processes that structure symbiotrophic assemblies can be influenced by forest management and tree selection, but at larger scales, environmental cues and host resource traits are the most prevalent forces.  相似文献   
998.
999.
1000.
The genus Taraxacum is characterized by prevailing complex multiple hybridity, frequent polyploidy and widespread agamospermous reproduction, which makes the phylogenetic analysis difficult. On the basis of the previous analysis of the variation of nrDNA in Taraxacum taxa with different ploidy levels and modes of reproduction, to mitigate consequences of the reticulate complexity of the genus, a phylogenetic study of 52 samples of sexually reproducing dandelions of 26 sections (and another 13 agamospermous representatives of other sections known to include sexuals) was carried out. Both sexual and agamospermous samples were analysed using maximum parsimony and neighbour network. Exclusively sexual dandelions were analysed using the same approaches. In spite of the general agreement among various types of analyses, there is a limited overall congruence between results of nrDNA analyses and the established taxonomic system of the genus Taraxacum. The analyses shed light on the relationships among the most primitive groups. A stable clade is formed by representatives of the sections Primigenia, Orientalia, Sonchidium, Piesis and T. cylleneum. Another case of stable relationships is that of the members of the sect. Dioszegia. Relationships between the sects. Erythrosperma and Erythrocarpa were supported, and the relatedness of the members of sect. Australasica was confirmed. Rather unexpectedly, the agamospermous samples of the sect. Oligantha (T. minutilobum) are shown to be closely related with the sect. Macrocornuta. The latter section is generally considered to be close to sect. Ceratoidea (T. koksaghyz) on morphological grounds but this presumption is not corroborated by the results of nrDNA analyses. Analyses of 72 samples of sexual dandelions were also performed using the trnL–trnF region of the chloroplast DNA. The maximum parsimony analysis of this region reveals intraspecific variation in a number of ancestral diploid sexual species, all present in the two main branches of the cladogram. This phenomenon is attributed to the ancient gene flow and possibly to the persistence of ancestral cpDNA polymorphism. The strict consensus cpDNA tree information content and interpretability is quite low. The maximum parsimony analysis of combined nrDNA and cpDNA data sets was also performed with expectably low interpretability of the results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号