首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1498篇
  免费   111篇
  国内免费   1篇
  1610篇
  2023年   6篇
  2022年   11篇
  2021年   28篇
  2020年   15篇
  2019年   17篇
  2018年   18篇
  2017年   24篇
  2016年   36篇
  2015年   62篇
  2014年   88篇
  2013年   79篇
  2012年   120篇
  2011年   116篇
  2010年   88篇
  2009年   73篇
  2008年   114篇
  2007年   100篇
  2006年   97篇
  2005年   76篇
  2004年   84篇
  2003年   81篇
  2002年   72篇
  2001年   19篇
  2000年   15篇
  1999年   14篇
  1998年   21篇
  1997年   17篇
  1996年   16篇
  1995年   15篇
  1994年   10篇
  1993年   10篇
  1992年   8篇
  1991年   9篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1981年   2篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1964年   2篇
  1959年   1篇
  1955年   1篇
  1954年   1篇
  1925年   1篇
  1919年   1篇
排序方式: 共有1610条查询结果,搜索用时 10 毫秒
21.
Connective tissue growth factor (CTGF) is a secreted protein that is strongly induced in human and experimental heart failure. CTGF is said to be profibrotic; however, the precise function of CTGF is unclear. We generated transgenic mice and rats with cardiomyocyte-specific CTGF overexpression (CTGF-TG). To investigate CTGF as a fibrosis inducer, we performed morphological and gene expression analyses of CTGF-TG mice and rat hearts under basal conditions and after stimulation with angiotensin II (Ang II) or isoproterenol, respectively. Surprisingly, cardiac tissues of both models did not show increased fibrosis or enhanced gene expression of fibrotic markers. In contrast to controls, Ang II treated CTGF-TG mice displayed preserved cardiac function. However, CTGF-TG mice developed age-dependent cardiac dysfunction at the age of 7 months. CTGF related heart failure was associated with Akt and JNK activation, but not with the induction of natriuretic peptides. Furthermore, cardiomyocytes from CTGF-TG mice showed unaffected cellular contractility and an increased Ca2+ reuptake from sarcoplasmatic reticulum. In an ischemia/reperfusion model CTGF-TG hearts did not differ from controls.Our data suggest that CTGF itself does not induce cardiac fibrosis. Moreover, it is involved in hypertrophy induction and cellular remodeling depending on the cardiac stress stimulus. Our new transgenic animals are valuable models for reconsideration of CTGF''s profibrotic function in the heart.  相似文献   
22.
23.
24.

Background  

Tetrahymena thermophila possesses many attributes that render it an attractive host for the expression of recombinant proteins. Surface proteins from the parasites Ichthyophthirius multifiliis and Plasmodium falciparum and avian influenza virus antigen H5N1 were displayed on the cell membrane of this ciliate. Furthermore, it has been demonstrated that T. thermophila is also able to produce a functional human DNase I. The present study investigates the heterologous expression of the functional human intestinal alkaline phosphatase (hiAP) using T. thermophila and thereby presents a powerful tool for the optimization of the ciliate-based expression system.  相似文献   
25.
DEK was originally described as a proto-oncogene protein and is now known to be a major component of metazoan chromatin. DEK is able to modify the structure of DNA by introducing supercoils. In order to find interaction partners and functional domains of DEK, we performed yeast two-hybrid screens and mutational analyses. Two-hybrid screening yielded C-terminal fragments of DEK, suggesting that DEK is able to multimerize. We could localize the domain to amino acids 270 to 350 and show that multimerization is dependent on phosphorylation by CK2 kinase in vitro. We also found two DNA binding domains of DEK, one on a fragment including amino acids 87 to 187 and containing the SAF-box DNA binding motif, which is located between amino acids 149 and 187. This region is sufficient to introduce supercoils into DNA. The second DNA binding domain is located between amino acids 270 and 350 and thus overlaps the multimerization domain. We show that the two DNA-interacting domains differ in their binding properties and in their abilities to respond to CK2 phosphorylation.  相似文献   
26.
An oscillatory increase in pancreatic beta cell cytoplasmic free Ca2+ concentration, [Ca2+]i, is a key feature in glucose-induced insulin release. The role of the voltage-gated Ca2+ channel beta3 subunit in the molecular regulation of these [Ca2+]i oscillations has now been clarified by using beta3 subunit-deficient beta cells. beta3 knockout mice showed a more efficient glucose homeostasis compared to wild-type mice due to increased glucose-stimulated insulin secretion. This resulted from an increased glucose-induced [Ca2+]i oscillation frequency in beta cells lacking the beta3 subunit, an effect accounted for by enhanced formation of inositol 1,4,5-trisphosphate (InsP3) and increased Ca2+ mobilization from intracellular stores. Hence, the beta3 subunit negatively modulated InsP3-induced Ca2+ release, which is not paralleled by any effect on the voltage-gated L type Ca2+ channel. Since the increase in insulin release was manifested only at high glucose concentrations, blocking the beta3 subunit in the beta cell may constitute the basis for a novel diabetes therapy.  相似文献   
27.
Chromosomal inversions can provide windows onto the cytogenetic, molecular, evolutionary and demographic histories of a species. Here we investigate a paracentric 1.17‐Mb inversion on chromosome 4 of Arabidopsis thaliana with nucleotide precision of its borders. The inversion is created by Vandal transposon activity, splitting an F‐box and relocating a pericentric heterochromatin segment in juxtaposition with euchromatin without affecting the epigenetic landscape. Examination of the RegMap panel and the 1001 Arabidopsis genomes revealed more than 170 inversion accessions in Europe and North America. The SNP patterns revealed historical recombinations from which we infer diverse haplotype patterns, ancient introgression events and phylogenetic relationships. We find a robust association between the inversion and fecundity under drought. We also find linkage disequilibrium between the inverted region and the early flowering Col‐FRIGIDA allele. Finally, SNP analysis elucidates the origin of the inversion to South‐Eastern Europe approximately 5000 years ago and the FRI‐Col allele to North‐West Europe, and reveals the spreading of a single haplotype to North America during the 17th to 19th century. The ‘American haplotype’ was identified from several European localities, potentially due to return migration.  相似文献   
28.
The speed and accuracy of protein synthesis are fundamental parameters for understanding the fitness of living cells, the quality control of translation, and the evolution of ribosomes. In this study, we analyse the speed and accuracy of the decoding step under conditions reproducing the high speed of translation in vivo. We show that error frequency is close to 10−3, consistent with the values measured in vivo. Selectivity is predominantly due to the differences in kcat values for cognate and near-cognate reactions, whereas the intrinsic affinity differences are not used for tRNA discrimination. Thus, the ribosome seems to be optimized towards high speed of translation at the cost of fidelity. Competition with near- and non-cognate ternary complexes reduces the rate of GTP hydrolysis in the cognate ternary complex, but does not appreciably affect the rate-limiting tRNA accommodation step. The GTP hydrolysis step is crucial for the optimization of both the speed and accuracy, which explains the necessity for the trade-off between the two fundamental parameters of translation.  相似文献   
29.
The mechanism by which YopP simultaneously inhibits mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB pathways has been elusive. Ectopic expression of YopP inhibits the activity and ubiquitination of a complex consisting of overexpressed TGF-beta-activated kinase 1 (TAK1) and its subunit TAK1-binding protein (TAB)1, but not of MEK kinase 1. YopP, but not the catalytically inactive mutant YopP(C172A), also suppresses basal and interleukin-1-inducible activation of endogenous TAK1, TAB1 and TAB2. YopP does not affect the interaction of TAK1, TAB1 and TAB2 but inhibits autophosphorylation of TAK1 at Thr 187 and phosphorylation of TAB1 at Ser 438. Glutathione S-transferase-tagged YopP (GST-YopP) binds to MAPK kinase (MAPKK)4 and TAB1 but not to TAK1 or TAB2 in vitro. Furthermore, YopP in synergy with a previously described negative regulatory feedback loop inhibits TAK1 by MAPKK6-p38-mediated TAB1 phosphorylation. Taken together, these data strongly suggest that YopP binds to TAB1 and directly inhibits TAK1 activity by affecting constitutive TAK1 and TAB1 ubiquitination that is required for autoactivation of TAK1.  相似文献   
30.
Hematopoietic stem cells (HSCs) are the source for the life-long supply of functional cells in peripheral blood while they simultaneously maintain their own reserve pool. However, there is accumulating evidence that HSCs are themselves subject to quantitative and qualitative exhaustion. Although several processes linked to mitotic activity can potentially account for the observed aging phenomena (e.g., DNA damage, telomere shortening, epigenetic modification), a precise understanding of HSC exhaustion is still missing. It is particularly unclear how individual aging processes on the single-cell level translate on the phenotypic level of the overall tissue and whether there is a functional implication of an age-structured HSC population. We address these issues by applying a novel mathematical model of HSC organization in which division-specific, cumulative alterations of stem cell quality determine the phenotypic and functional appearance of the overall cell population. Adapting the model to a number of basic experimental findings, we quantify the level of additional heterogeneity that is introduced by a population of individually aging cells. Based on this model, we are able to conclude that division-dependent processes of cellular aging explain a wide range of phenomena on HSC exhaustion and that HSC aging needs to be considered as a highly heterogeneous process. We furthermore report that functional heterogeneity between young and old HSCs appears closely similar to the phenomena described for long- and short-term repopulating cells. We speculate whether differential, division-coupled stem cell aging introduces an intra-animal variability that also accounts for heterogeneity with respect to the repopulation ability of HSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号