首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1767篇
  免费   140篇
  国内免费   1篇
  1908篇
  2023年   7篇
  2022年   13篇
  2021年   32篇
  2020年   16篇
  2019年   19篇
  2018年   22篇
  2017年   25篇
  2016年   39篇
  2015年   76篇
  2014年   98篇
  2013年   87篇
  2012年   131篇
  2011年   125篇
  2010年   94篇
  2009年   83篇
  2008年   123篇
  2007年   111篇
  2006年   106篇
  2005年   85篇
  2004年   92篇
  2003年   90篇
  2002年   84篇
  2001年   25篇
  2000年   29篇
  1999年   32篇
  1998年   25篇
  1997年   22篇
  1996年   16篇
  1995年   18篇
  1994年   12篇
  1993年   12篇
  1992年   20篇
  1991年   12篇
  1990年   14篇
  1989年   10篇
  1988年   11篇
  1987年   6篇
  1986年   13篇
  1985年   11篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1979年   4篇
  1978年   5篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1966年   4篇
  1964年   2篇
排序方式: 共有1908条查询结果,搜索用时 15 毫秒
11.
Flagellar and basal body development during cell division was studied in the biflagellate green alga Spermatozopsis similis Preisig et Melkonian by light microscopy of immobilized living cells, statistical analysis of flagellar lengths during the cell cycle, and electron microscopy of cells and isolated cytoskeletons. Interphase cells display two flagella of unequal/subequal length. An eyespot located in an anterior lobe of the chloroplast is connected to the basal body bearing the shorter flagellum by means of a five-stranded microtubular root. Until cell division, the two parental flagella attain the same length. During cell division, each cell forms two new flagella that grow to a length of 1.5 μm before they are distributed in a semiconservative fashion together with the parental flagella to the two progeny cells at cytokinesis. During the following interphase, the flagella newly formed during the preceding cell division grow to attain the same length as the parental flagella until the subsequent cell division. The shorter of the two flagella of a cell thus represents the developmentally younger flagellum, which transforms to the mature state during two consecutive cell cycles. Interphase cells display only two flagella-bearing basal bodies; two nascent basal bodies are formed during cell division and are connected to the microtubular d-roots of respective parental basal bodies with which the newly formed basal bodies are later distributed to the progeny cells. During segregation, basal body pairs shaft into the 11/5 o'clock direction, thus conserving the 1/7 o'clock configuration of basal body pairs of interphase cells. Prior to chloroplast and cell division, an eyespot is newly formed near the cell posterior in close association with a 1s microtubular root, while the parental eyespot is retained. During basal body segregation, eyespot-root connections for both the old and newly formed eyespots are presumably lost, and new associations of the eyespots with the 2s roots of the newly formed basal bodies are established during cytokinesis. The significance of this “eyespot-flagellar root developmental cycle” for the absolute orientation of the progeny cells is discussed.  相似文献   
12.
The mitochondrial ADP/ATP translocator, also called adenine nucleotide translocase (ANT), is synthesized in plants with an N-terminal extension which is cleaved upon import into mitochondria. In contrast, the homologous proteins of mammals or fungi do not contain such a transient amino terminal presequence. To investigate whether the N-terminal extension is needed for correct intracellular sorting in vivo , translational fusions were constructed of the translocator cDNA—with and without presequence—with the β-glucuronidase ( gus ) reporter gene. The distribution of reporter enzymatic activity in the subcellular compartments of transgenic plants and transformed yeast cells was subsequently analysed. The results show that: (i) the plant translocator presequence is not necessary for the correct localization of the ANT to the mitochondria; (ii) the mitochondrial targeting information contained in the mature part of the protein is sufficient to overcome, to some extent, the presence of plastid transit peptides; and (iii) the presequence alone is not able to target a passenger protein to mitochondria in vivo .  相似文献   
13.
Affinity chromatography has been used to isolate and compare the peanut agglutinin receptors from neuraminidase-treated human, bovine and porcine erythrocyte membranes. Passage of Triton X-100-solubilised membrane material through either Sepharose- or acrylamide-based affinity columns resulted in the reversible binding of receptor molecules to the immobilised lectin. Elution with 0.2M galactose released specifically bound glycoprotein fractions, the composition and molecular weights of which were determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate.Carbohydrate analysis by gas chromatography identified these bound glycoprotein fractions as the major sources of the O-glycosidic-linked disaccharide galactosyl-β-(1 → 3)-N-acetylgalactosamine in these membranes. It is suggested that these isolated fractions represent a discrete population of glycoproteins within the membranes studied, which possess both O-glycosidic- and N-glycosidic-linked carbohydrates.  相似文献   
14.
15.
Phosphate transport across the chloroplast envelope is rapidly inactivated by the amino-group reagent 2,4,6-trinitrobenzene sulfonate. Subsequent exposure to [3H]NaBH4 leads to an incorporation of the trinitrophenyl moiety into envelope membrane preparations. From the membrane proteins only a polypeptide with 29000 dalton molecular weight is labelled. The inactivation of phosphate transport and the incorporation of radioactivity are both specifically reduced by the presence of substrates.The results lead to the conclusion that a polypeptide with a molecular weight of 29000 dalton and containing a lysyl residue at the substrate binding site is involved in the phosphate translocator function.  相似文献   
16.
The vibrational Raman spectra of the basic pancreatic trypsin inhibitor in aqueous solution, as lyophilized powder and in a single crystal and presented. The thermal stability of this protein is demonstrated by the fact that minor alterations in the spectrum, mainly in the amide III band near 1260 cm-1, occur in the solution spectrum only at temperatures above 75 degrees C. No significant spectral changes appear when the pH value of the solution is varied in the range from 1.5 to 8.7. The distinct differences of the powder spectrum compared to that of the solution, show that lyophilization causes appreciable conformational changes both in the main-chain and in the side-chains. A difference in main chain conformation of the basic pancreatic trypsin inhibitor in single crystal and in solution is suggested by different amide III frequencies.  相似文献   
17.
18.
Holz MK  Ballif BA  Gygi SP  Blenis J 《Cell》2005,123(4):569-580
In response to nutrients, energy sufficiency, hormones, and mitogenic agents, S6K1 phosphorylates several targets linked to translation. However, the molecular mechanisms whereby S6K1 is activated, encounters substrate, and contributes to translation initiation are poorly understood. We show that mTOR and S6K1 maneuver on and off the eukaryotic initiation factor 3 (eIF3) translation initiation complex in a signal-dependent, choreographed fashion. When inactive, S6K1 associates with the eIF3 complex, while the S6K1 activator mTOR/raptor does not. Cell stimulation promotes mTOR/raptor binding to the eIF3 complex and phosphorylation of S6K1 at its hydrophobic motif. Phosphorylation results in S6K1 dissociation, activation, and subsequent phosphorylation of its translational targets, including eIF4B, which is then recruited into the complex in a phosphorylation-dependent manner. Thus, the eIF3 preinitiation complex acts as a scaffold to coordinate a dynamic sequence of events in response to stimuli that promote efficient protein synthesis.  相似文献   
19.
We recently developed the Rosetta algorithm for ab initio protein structure prediction, which generates protein structures from fragment libraries using simulated annealing. The scoring function in this algorithm favors the assembly of strands into sheets. However, it does not discriminate between different sheet motifs. After generating many structures using Rosetta, we found that the folding algorithm predominantly generates very local structures. We surveyed the distribution of beta-sheet motifs with two edge strands (open sheets) in a large set of non-homologous proteins. We investigated how much of that distribution can be accounted for by rules previously published in the literature, and developed a filter and a scoring method that enables us to improve protein structure prediction for beta-sheet proteins. Proteins 2002;48:85-97.  相似文献   
20.
Granule-plasma membrane docking and fusion can only occur when proteins that enable these reactions are present at the granule-plasma membrane contact. Thus, the mobility of granule membrane proteins may influence docking and membrane fusion. We measured the mobility of vesicle associated membrane protein 2 (VAMP2), synaptotagmin 1 (Syt1), and synaptotagmin 7 (Syt7) in chromaffin granule membranes in living chromaffin cells. We used a method that is not limited by standard optical resolution. A bright flash of strongly decaying evanescent field produced by total internal reflection was used to photobleach GFP-labeled proteins in the granule membrane. Fluorescence recovery occurs as unbleached protein in the granule membrane distal from the glass interface diffuses into the more bleached proximal regions, enabling the measurement of diffusion coefficients. We found that VAMP2-EGFP and Syt7-EGFP are mobile with a diffusion coefficient of ∼3 × 10−10 cm2/s. Syt1-EGFP mobility was below the detection limit. Utilizing these diffusion parameters, we estimated the time required for these proteins to arrive at docking and nascent fusion sites to be many tens of milliseconds. Our analyses raise the possibility that the diffusion characteristics of VAMP2 and Syt proteins could be a factor that influences the rate of exocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号