首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   33篇
  2021年   2篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   12篇
  2013年   25篇
  2012年   17篇
  2011年   17篇
  2010年   16篇
  2009年   9篇
  2008年   17篇
  2007年   13篇
  2006年   18篇
  2005年   25篇
  2004年   14篇
  2003年   25篇
  2002年   25篇
  2001年   7篇
  2000年   2篇
  1999年   8篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   8篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   7篇
  1981年   8篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1974年   7篇
  1973年   6篇
  1972年   2篇
  1964年   1篇
  1959年   1篇
  1955年   1篇
排序方式: 共有397条查询结果,搜索用时 93 毫秒
81.
Several lakes in northern Sweden have laminated sediments, of which many are interpreted as varved (annually laminated). In one of these lakes, a core of the recent sediment has been sampled annually since 1979 (except 1984). These cores verify that one varve, comprising of a thick summer layer (often colour-banded) and a thin winter layer, is formed each year. The cores also show, that, other than compaction, no change in visual appearance of the individual varves takes place after they have been overlain by new varves.  相似文献   
82.
83.
84.
Cholesterol metabolism in the brain is distinct from that in other tissues due to the fact that cholesterol itself is unable to pass across the blood-brain barrier. Elimination of brain cholesterol is mainly dependent on a neuronal-specific cytochrome P450, CYP46A1, catalyzing the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), which is able to pass the blood-brain barrier. A suitable model for studying this elimination from human neuronal cells has not been described previously. It is shown here that differentiated Ntera2/clone D1 (NT2) cells express the key genes involved in brain cholesterol homeostasis including CYP46A1, and that the expression profiles of the genes observed during neuronal differentiation are those expected to occur in vivo. Thus there was a decrease in the mRNA levels corresponding to cholesterol synthesis enzymes and a marked increase in the mRNA level of CYP46A1. The latter increase was associated with increased levels of CYP46A1 protein and increased production of 24OHC. The magnitude of the secretion of 24OHC from the differentiated NT2 cells into the medium was similar to that expected to occur under in vivo conditions. An alternative to elimination of cholesterol by the CYP46A1 mechanism is elimination by CYP27A1, and the product of this enzyme, 27-hydroxycholesterol (27OHC), is also known to pass the blood-brain barrier. The CYP27A1 protein level decreased during the differentiation of the NT2 cells in parallel with decreased production of 27OHC. The ratio between 24OHC and 27OHC in the medium from the cultured cells increased, by a factor of 13, during the differentiation process. The results suggest that progenitor cells eliminate cholesterol in the form of 27OHC while neurogenesis induces a change to the CYP46A1 dependent pathway. Furthermore this study demonstrates that differentiated NT2 cells are suitable for studies of cholesterol homeostasis in human neurons.  相似文献   
85.
86.
87.
Mites in the genus Tropilaelaps (Acari: Laelapidae) are ectoparasites of the brood of honey bees (Apis spp.). Different Tropilaelaps subspecies were originally described from Apis dorsata, but a host switch occurred to the Western honey bee, Apis mellifera, for which infestations can rapidly lead to colony death. Tropilaelaps is hence considered more dangerous to A. mellifera than the parasitic mite Varroa destructor. Honey bees are also infected by many different viruses, some of them associated with and vectored by V. destructor. In recent years, deformed wing virus (DWV) has become the most prevalent virus infection in honey bees associated with V. destructor. DWV is distributed world-wide, and found wherever the Varroa mite is found, although low levels of the virus can also be found in Varroa free colonies. The Varroa mite transmits viral particles when feeding on the haemolymph of pupae or adult bees. Both the Tropilaelaps mite and the Varroa mite feed on honey bee brood, but no observations of DWV in Tropilaelaps have so far been reported. In this study, quantitative real-time RT-PCR was used to show the presence of DWV in infested brood and Tropilaelaps mercedesae mites collected in China, and to demonstrate a close quantitative association between mite-infested pupae of A. mellifera and DWV infections. Phylogenetic analysis of the DWV sequences recovered from matching pupae and mites revealed considerable DWV sequence heterogeneity and polymorphism. These polymorphisms appeared to be associated with the individual brood cell, rather than with a particular host.  相似文献   
88.
Nosema ceranae is a microsporidian parasite described from the Asian honey bee, Apis cerana. The parasite is cross-infective with the European honey bee, Apis mellifera. It is not known when or where N. ceranae first infected European bees, but N. ceranae has probably been infecting European bees for at least two decades. N. ceranae appears to be replacing Nosema apis, at least in some populations of European honey bees. This replacement is an enigma because the spores of the new parasite are less durable than those of N. apis. Virulence data at both the individual bee and at the colony level are conflicting possibly because the impact of this parasite differs in different environments. The recent advancements in N. ceranae genetics, with a draft assembly of the N. ceranae genome available, are discussed and the need for increased research on the impacts of this parasite on European honey bees is emphasized.  相似文献   
89.
We have studied the biosynthesis of mucins in organ cultures of human colon using isopycnic density-gradient centrifugation following pulse labelling with [(35)S]sulphate and [(3)H]-D-glucosamine. A high-density [(35)S]sulphate labelled component, of larger size than MUC2 monomers, appeared in the tissue and also in the medium. It was not degraded by reduction, trypsin digestion, digestion with chondroitin ABC lyase or heparan sulphate III lyase, but was cleaved into smaller fragments following alkaline borohydride treatment and appears to be a monomeric, mucin-like molecule containing a protease-resistant domain with a larger hydrodynamic volume than MUC2 monomers. Although this macromolecule incorporated much more radiolabel than MUC2, it was not detected using chemical analysis and thus appears to be a component with a high metabolic turnover present in a very small amount. Most of the [(3)H]-D-glucosamine label was associated with low-density material that was well separated from MUC2, which was poorly labelled. Most of MUC2 was associated with the tissue as an 'insoluble' complex. The amount of MUC2 remained constant and its associated radiolabel increased only slightly with time. Analysis of the MUC2 subunits from the reduced 'insoluble' complex showed the typical reduction-insensitive oligomers and confirmed that the radiolabel was associated with this mucin. The large size of the [(35)S]-labelled putative monomeric mucin makes it difficult to separate it from reduced insoluble complex MUC2. As a result, many studies of intestinal mucin synthesis and secretion in the past have most likely been performed on 'mixtures' of this mucin and MUC2 and are thus not possible to interpret as the metabolic behaviour of oligomeric mucins.  相似文献   
90.
We describe here a new method for large-scale scanning of microbial genomes on a quantitative and qualitative basis. To achieve this aim we propose to create NotI passports: databases containing NotI tags. We demonstrated that these tags comprising 19 bp of sequence information could be successfully generated using DNA isolated from intestinal or fecal samples. Such NotI passports allow the discrimination between closely related bacterial species and even strains. This procedure for generating restriction site tagged sequences (RSTS) is called passporting and can be adapted to any other rare cutting restriction enzyme. A comparison of 1312 tags from available sequenced Escherichia coli genomes, generated with the NotI, PmeI and SbfI restriction enzymes, revealed only 219 tags that were not unique. None of these tags matched human or rodent sequences. Therefore the approach allows analysis of complex microbial mixtures such as in human gut and identification with high accuracy of a particular bacterial strain on a quantitative and qualitative basis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号