首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   23篇
  2021年   6篇
  2018年   8篇
  2017年   4篇
  2016年   6篇
  2015年   20篇
  2014年   18篇
  2013年   26篇
  2012年   25篇
  2011年   26篇
  2010年   20篇
  2009年   10篇
  2008年   23篇
  2007年   31篇
  2006年   15篇
  2005年   13篇
  2004年   20篇
  2003年   15篇
  2002年   12篇
  2001年   7篇
  2000年   4篇
  1999年   10篇
  1998年   7篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1992年   5篇
  1991年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1974年   3篇
  1971年   2篇
  1970年   2篇
  1967年   2篇
  1961年   2篇
  1960年   2篇
  1959年   2篇
  1958年   6篇
  1957年   4篇
  1955年   2篇
  1954年   3篇
排序方式: 共有439条查询结果,搜索用时 15 毫秒
101.
Myocilin is a protein found in the extracellular matrix of trabecular meshwork tissue, the anatomical region of the eye involved in regulating intraocular pressure. Wild-type (WT) myocilin has been associated with steroid-induced glaucoma, and variants of myocilin have been linked to early-onset inherited glaucoma. Elevated levels and aggregation of myocilin hasten increased intraocular pressure and glaucoma-characteristic vision loss due to irreversible damage to the optic nerve. In spite of reports on the intracellular accumulation of mutant and WT myocilin in vitro, cell culture, and model organisms, these aggregates have not been structurally characterized. In this work, we provide biophysical evidence for the hallmarks of amyloid fibrils in aggregated forms of WT and mutant myocilin localized to the C-terminal olfactomedin (OLF) domain. These fibrils are grown under a variety of conditions in a nucleation-dependent and self-propagating manner. Protofibrillar oligomers and mature amyloid fibrils are observed in vitro. Full-length mutant myocilin expressed in mammalian cells forms intracellular amyloid-containing aggregates as well. Taken together, this work provides new insights into and raises new questions about the molecular properties of the highly conserved OLF domain, and suggests a novel protein-based hypothesis for glaucoma pathogenesis for further testing in a clinical setting.  相似文献   
102.
During a recent period of increased influx of warm Atlantic water to the western coast of Svalbard, we have observed a northward expansion of boreal Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) into areas dominated by the native polar cod (Boreogadus saida). To determine the potential impact of new ecological interactions, we studied the diet of co-occurring juvenile gadoids in fjords, open water, and sea ice around Svalbard. We also reviewed the available literature on polar cod feeding in different habitats across the Arctic to determine whether region, habitat, or fish size may influence diet. Feeding by polar cod in the pelagic zone was size dependent, with small fish primarily consuming Calanus spp. and smaller copepods, with an increasing ration of Themisto spp. at larger sizes. In benthic habitats, diets were more varied and included considerably more unidentified material and sediment. Less than 40% dietary overlap was detected among the three species when they were found together. Stable isotope analyses indicated these patterns were representative of longer-term assimilation. The low interspecific dietary overlap suggests little direct competition. Future increases in abundance and the high predation potential of the boreal taxa, however, may impact the persistence of polar cod on some Arctic shelves.  相似文献   
103.
Protein kinase B (PKB or Akt) plays an essential role in the actions of insulin, cytokines, and growth factors, although the substrates for PKB that are relevant to many of its actions require identification. In this study, we have reported the identification of p122RhoGAP, a GTPase-activating protein selective for RhoA and rodent homologue of the tumor suppressor deleted in liver cancer (DLC1) as a novel insulin-stimulated phosphoprotein in primary rat adipocytes. We have demonstrated that Ser-322 is phosphorylated upon insulin stimulation of intact cells and that this site is directly phosphorylated in vitro by PKB and ribosomal S6 kinase, members of the AGC (protein kinases A, G, and C) family of insulin-stimulated protein kinases. Furthermore, expression of constitutively active mutants of PKB or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) stimulates Ser-322 phosphorylation in intact cells, demonstrating that activation of the PKB or MEK pathway is sufficient for Ser-322 phosphorylation in vivo. Indeed, in primary adipocytes, insulin-stimulated Ser-322 phosphorylation was almost exclusively regulated by the phosphatidylinositol 3-kinase/PKB pathway, whereas in immortalized cells, insulin-stimulated phosphorylation was predominantly regulated by the MEK/extracellular signal-regulated kinase/ribosomal S6 kinase pathway, with the phosphatidylinositol 3-kinase/PKB pathway playing a minor role. These results demonstrate that p122RhoGAP Ser-322 acts as an integrator of signal transduction in a manner dependent on the cellular context.  相似文献   
104.
The elevation of [cAMP]i is an important mechanism of platelet inhibition and is regulated by the opposing activity of adenylyl cyclase and phosphodiesterase (PDE). In this study, we demonstrate that a variety of platelet agonists, including thrombin, significantly enhance the activity of PDE3A in a phosphorylation-dependent manner. Stimulation of platelets with the PAR-1 agonist SFLLRN resulted in rapid and transient phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492, in parallel with the PKC (protein kinase C) substrate, pleckstrin. Furthermore, phosphorylation and activation of PDE3A required the activation of PKC, but not of PI3K/PKB, mTOR/p70S6K, or ERK/RSK. Activation of PKC by phorbol esters also resulted in phosphorylation of the same PDE3A sites in a PKC-dependent, PKB-independent manner. This was further supported by the finding that IGF-1, which strongly activates PI3K/PKB, but not PKC, did not regulate PDE3A. Platelet activation also led to a PKC-dependent association between PDE3A and 14-3-3 proteins. In contrast, cAMP-elevating agents such as PGE1 and forskolin-induced phosphorylation of Ser312 and increased PDE3A activity, but did not stimulate 14-3-3 binding. Finally, complete antagonism of PGE1-evoked cAMP accumulation by thrombin required both Gi and PKC activation. Together, these results demonstrate that platelet activation stimulates PKC-dependent phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492 leading to a subsequent increase in cAMP hydrolysis and 14-3-3 binding.Upon vascular injury, platelets adhere to the newly exposed subintimal collagen and undergo activation leading to platelet spreading to cover the damaged region and release of thrombogenic factors such as ADP and thromboxane A2. In addition, platelets are activated by thrombin, which is generated as a result of activation of the coagulation pathway, and stimulates platelets by cleaving the protease-activated receptors (PAR),2 PAR-1 and PAR-4. The final common pathway is the exposure of fibrinogen binding sites on integrin αIIbβ3 resulting in platelet aggregation and thrombus formation.Thrombin-mediated cleavage of PARs leads to activation of phospholipase C β (PLC), hydrolysis of phosphatidylinositol (PI) 4,5-bisphosphate and a subsequent increase in [Ca2+]i and activation of protein kinase C (PKC). Protein kinase C contributes to platelet activation both directly, through affinity regulation of the fibrinogen receptor, integrin αIIbβ3 (1), and indirectly by enhancing degranulation (2). Thrombin also stimulates activation of PI 3-kinases and subsequent generation of PI (3, 4, 5) trisphosphate and PI (3, 4) bisphosphate (3), which recruit protein kinase B (PKB) to the plasma membrane where it becomes phosphorylated and activated.Platelet activation is opposed by agents that raise intracellular 3′-5′-cyclic adenosine monophosphate ([cAMP]i). cAMP is a powerful inhibitory second messenger that down-regulates platelet function by interfering with Ca2+ homeostasis, degranulation and integrin activation (4). Synthesis of cAMP is stimulated by mediators such as prostaglandin I2 (PGI2), which bind to Gs-coupled receptors leading to activation of adenylate cyclase (AC). This inhibitory pathway is opposed by thrombin, which inhibits the elevation of cAMP indirectly via autocrine activation of the Gi-coupled ADP receptor P2Y12. cAMP signaling is terminated by hydrolysis to biologically inert 5′-AMP by 3′-phosphodiesterases. Platelets express two cAMP phosphodiesterase isoforms, cGMP-stimulated PDE2 and cGMP-inhibited PDE3A. PDE3A is the most abundant isoform in platelets and has a ∼250-fold lower Km for cAMP than PDE2 (4). As a consequence of these properties, PDE3A exerts a greater influence on cAMP homeostasis, particularly at resting levels. The importance of PDE3A in platelet function is further emphasized by the finding that the PDE3A inhibitors cilostamide and milrinone raise basal cAMP levels and strongly inhibit thrombin-induced platelet activation (5). Furthermore, PDE3A-/- mice demonstrate increased resting levels of platelet cAMP and are protected against a model of pulmonary thrombosis (6). In contrast, the PDE2 inhibitor EHNA has no significant effect on cAMP levels and platelet aggregation (7, 8). The activity of PDE3A is therefore essential to maintain low equilibrium levels of cAMP and determine the threshold for platelet activation (7).Like its paralogue PDE3B, it has recently become clear that PDE3A activity can be positively regulated by phosphorylation in platelets and human oocytes (9, 10). There is some evidence that PKB may be involved in this regulation, although the phosphorylation sites are poorly characterized. In contrast, phosphorylation of PDE3A in HeLa cells was stimulated by phorbol esters and blocked by inhibitors of PKC (11). In this study, we aimed to identify the signaling pathways and phosphorylation sites that are involved in regulation of platelet PDE3A. Here, we show strong evidence that PKC, and not PKB, is involved in agonist-stimulated PDE3A phosphorylation on Ser312, Ser428, Ser438, Ser465, and Ser492, leading to an increase in PDE3A activity, 14-3-3 binding and modulation of intracellular cAMP levels.  相似文献   
105.

Background  

To understand neurophysiological mechanisms underlying cognitive dysfunction in low-grade glioma (LGG) patients by evaluating the spatial structure of 'resting-state' brain networks with graph theory.  相似文献   
106.
We analysed cell wall formation in rapidly growing root hairs of Triticum aestivum under reduced turgor pressure by application of iso- and hypertonic mannitol solutions. Our experimental series revealed an osmotic value of wheat root hairs of 150 mOsm. In higher concentrations (200–650 mOsm), exocytosis of wall material and its deposition, as well as callose synthesis, still occurred, but the elongation of root hairs was stopped. Even after strong plasmolysis when the protoplast retreated from the cell wall, deposits of wall components were observed. Labelling with DiOC6(3) and FM1-43 revealed numerous Hechtian strands that spanned the plasmolytic space. Interestingly, the Hechtian strands also led towards the very tip of the root hair suggesting strong anchoring sites that are readily incorporated into the new cell wall. Long-term treatments of over 24 h in mannitol solutions (150–450 mOsm) resulted in reduced growth and concentration-dependent shortening of root hairs. However, the formation of new root hairs does occur in all concentrations used. This reflects the extraordinary potential of wheat root cells to adapt to environmental stress situations.  相似文献   
107.

Background

Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower high-density lipoprotein (HDL) cholesterol, raise low-density lipoprotein (LDL) cholesterol, and increase the risk of coronary heart disease. The effects of trans fatty acids from ruminants are less clear. We investigated the effect on blood lipids of cis-9, trans-11 conjugated linoleic acid (CLA), a trans fatty acid largely restricted to ruminant fats.

Methodology/Principal Findings

Sixty-one healthy women and men were sequentially fed each of three diets for three weeks, in random order, for a total of nine weeks. Diets were identical except for 7% of energy (approximately 20 g/day), which was provided either by oleic acid, by industrial trans fatty acids, or by a mixture of 80% cis-9, trans-11 and 20% trans-10, cis-12 CLA. After the oleic acid diet, mean (± SD) serum LDL cholesterol was 2.68±0.62 mmol/L compared to 3.00±0.66 mmol/L after industrial trans fatty acids (p<0.001), and 2.92±0.70 mmol/L after CLA (p<0.001). Compared to oleic acid, HDL-cholesterol was 0.05±0.12 mmol/L lower after industrial trans fatty acids (p = 0.001) and 0.06±0.10 mmol/L lower after CLA (p<0.001). The total-to–HDL cholesterol ratio was 11.6% higher after industrial trans fatty acids (p<0.001) and 10.0% higher after CLA (p<0.001) relative to the oleic acid diet.

Conclusions/Significance

High intakes of an 80∶20 mixture of cis-9, trans-11 and trans-10, cis-12 CLA raise the total to HDL cholesterol ratio in healthy volunteers. The effect of CLA may be somewhat less than that of industrial trans fatty acids.

Trial Registration

ClinicalTrials.gov NCT00529828  相似文献   
108.

Background

Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower HDL cholesterol, raise LDL cholesterol, and increase the risk of coronary heart disease. The effects of conjugated linoleic acid and trans fatty acids from ruminant animals are less clear. We reviewed the literature, estimated the effects trans fatty acids from ruminant sources and of conjugated trans linoleic acid (CLA) on blood lipoproteins, and compared these with industrial trans fatty acids.

Methodology/Principal Findings

We searched Medline and scanned reference lists for intervention trials that reported effects of industrial trans fatty acids, ruminant trans fatty acids or conjugated linoleic acid on LDL and HDL cholesterol in humans. The 39 studies that met our criteria provided results of 29 treatments with industrial trans fatty acids, 6 with ruminant trans fatty acids and 17 with CLA. Control treatments differed between studies; to enable comparison between studies we recalculated for each study what the effect of trans fatty acids on lipoprotein would be if they isocalorically replaced cis mono unsaturated fatty acids. In linear regression analysis the plasma LDL to HDL cholesterol ratio increased by 0.055 (95%CI 0.044–0.066) for each % of dietary energy from industrial trans fatty acids replacing cis monounsaturated fatty acids The increase in the LDL to HDL ratio for each % of energy was 0.038 (95%CI 0.012–0.065) for ruminant trans fatty acids, and 0.043 (95% CI 0.012–0.074) for conjugated linoleic acid (p = 0.99 for difference between CLA and industrial trans fatty acids; p = 0.37 for ruminant versus industrial trans fatty acids).

Conclusions/Significance

Published data suggest that all fatty acids with a double bond in the trans configuration raise the ratio of plasma LDL to HDL cholesterol.  相似文献   
109.

Background

Malaria imposes significant costs on households and the poor are disproportionately affected. However, cost data are often from quantitative surveys with a fixed recall period. They do not capture costs that unfold slowly over time, or seasonal variations. Few studies investigate the different pathways through which malaria contributes towards poverty. In this paper, a framework indicating the complex links between malaria, poverty and vulnerability at the household level is developed and applied using data from rural Kenya.

Methods

Cross-sectional surveys in a wet and dry season provide data on treatment-seeking, cost-burdens and coping strategies (n = 294 and n = 285 households respectively). 15 case study households purposively selected from the survey and followed for one year provide in-depth qualitative information on the links between malaria, vulnerability and poverty.

Results

Mean direct cost burdens were 7.1% and 5.9% of total household expenditure in the wet and dry seasons respectively. Case study data revealed no clear relationship between cost burdens and vulnerability status at the end of the year. Most important was household vulnerability status at the outset. Households reporting major malaria episodes and other shocks prior to the study descended further into poverty over the year. Wealthier households were better able to cope.

Conclusion

The impacts of malaria on household economic status unfold slowly over time. Coping strategies adopted can have negative implications, influencing household ability to withstand malaria and other contingencies in future. To protect the poor and vulnerable, malaria control policies need to be integrated into development and poverty reduction programmes.  相似文献   
110.
dTDP-rhamnose is an important precursor of cell wall polysaccharides and rhamnose-containing exopolysaccharides (EPS) in Lactococcus lactis. We cloned the rfbACBD operon from L. lactis MG1363, which comprises four genes involved in dTDP-rhamnose biosynthesis. When expressed in Escherichia coli, the lactococcal rfbACBD genes could sustain heterologous production of the Shigella flexneri O antigen, providing evidence of their functionality. Overproduction of the RfbAC proteins in L. lactis resulted in doubled dTDP-rhamnose levels, indicating that the endogenous RfbAC activities control the intracellular dTDP-rhamnose biosynthesis rate. However, RfbAC overproduction did not affect rhamnose-containing B40-EPS production levels. A nisin-controlled conditional RfbBD mutant was unable to grow in media lacking the inducer nisin, indicating that the rfb genes have an essential role in L. lactis. Limitation of RfbBD activities resulted in the production of altered EPS. The monomeric sugar of the altered EPS consisted of glucose, galactose, and rhamnose at a molar ratio of 1:0.3:0.2, which is clearly different from the ratio in the native sugar. Biophysical analysis revealed a fourfold-greater molecular mass and a twofold-smaller radius of gyration for the altered EPS, indicating that these EPS are more flexible polymers with changed viscosifying properties. This is the first indication that enzyme activity at the level of central carbohydrate metabolism affects EPS composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号