首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1546篇
  免费   146篇
  国内免费   1篇
  2023年   12篇
  2022年   35篇
  2021年   31篇
  2020年   23篇
  2019年   17篇
  2018年   31篇
  2017年   32篇
  2016年   37篇
  2015年   77篇
  2014年   87篇
  2013年   85篇
  2012年   122篇
  2011年   144篇
  2010年   75篇
  2009年   65篇
  2008年   78篇
  2007年   92篇
  2006年   69篇
  2005年   80篇
  2004年   69篇
  2003年   58篇
  2002年   70篇
  2001年   21篇
  2000年   19篇
  1999年   24篇
  1998年   16篇
  1997年   7篇
  1996年   8篇
  1995年   13篇
  1994年   8篇
  1993年   4篇
  1992年   18篇
  1991年   10篇
  1990年   17篇
  1989年   10篇
  1988年   11篇
  1987年   13篇
  1986年   10篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   8篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   9篇
  1976年   7篇
  1974年   3篇
  1968年   4篇
排序方式: 共有1693条查询结果,搜索用时 15 毫秒
61.
62.
Increases in stand-replacing wildfires in the western USA have widespread implications for ecosystem carbon (C) cycling, in part because the decomposition of trees killed by fire can be a long-term source of CO2 to the atmosphere. Knowledge of the composition and function of decay fungi communities may be important to understanding how wildfire alters C cycles. We assessed the effects of stand-replacing wildfires on the community structure of wood-inhabiting fungi along a 32-yr wildfire chronosequence. Fire was associated with low species richness for up to 4 yr and altered species composition relative to unburned forest for the length of the chronosequence. A laboratory incubation demonstrated that species varied in their capacity to decompose wood; Hypocrea lixii, an indicator of the most recent burn, caused the lowest decomposition rate. Our results show that stand-replacing wildfires have long-term effects on fungal communities, which may have consequences for wood decomposition and C cycling.  相似文献   
63.
The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.  相似文献   
64.
65.
66.
Get3 in yeast or TRC40 in mammals is an ATPase that, in eukaryotes, is a central element of the GET or TRC pathway involved in the targeting of tail‐anchored proteins. Get3 has also been shown to possess chaperone holdase activity. A bioinformatic assessment was performed across all domains of life on functionally important regions of Get3 including the TRC40‐insert and the hydrophobic groove essential for tail‐anchored protein binding. We find that such a hydrophobic groove is much more common in bacterial Get3 homologs than previously appreciated based on a directed comparison of bacterial ArsA and yeast Get3. Furthermore, our analysis shows that the region containing the TRC40‐insert varies in length and methionine content to an unexpected extent within eukaryotes and also between different phylogenetic groups. In fact, since the TRC40‐insert is present in all domains of life, we suggest that its presence does not automatically predict a tail‐anchored protein targeting function. This opens up a new perspective on the function of organellar Get3 homologs in plants which feature the TRC40‐insert but have not been demonstrated to function in tail‐anchored protein targeting. Our analysis also highlights a large diversity of the ways Get3 homologs dimerize. Thus, based on the structural features of Get3 homologs, these proteins may have an unexplored functional diversity in all domains of life.   相似文献   
67.
Liberibacter asiaticus is the prevalent causative pathogen of Huanglongbing or citrus greening disease, which has resulted in a devastating crisis in the citrus industry. A thorough understanding of this pathogen's physiology and mechanisms to control cell survival is critical in the identification of therapeutic targets. YbeY is a highly conserved bacterial RNase that has been implicated in multiple roles. In this study, we evaluated the biochemical characteristics of the L. asiaticus YbeY (CLIBASIA_01560) and assessed its potential as a target for antimicrobials. YbeYLas was characterized as an endoribonuclease with activity on 3′ and 5′ termini of 16S and 23S rRNAs, and the capacity to suppress the E. coli ΔybeY phenotype. We predicted the YbeYLas protein:ligand interface and subsequently identified a flavone compound, luteolin, as a selective inhibitor. Site-directed mutagenesis was subsequently used to identify key residues involved in the catalytic activity of YbeYLas. Further evaluation of naturally occurring flavonoids in citrus trees indicated that both flavones and flavonols had potent inhibitory effects on YbeYLas. Luteolin was subsequently examined for efficacy against L. asiaticus in Huanglongbing-infected citrus trees, where a significant reduction in L. asiaticus gene expression was observed.  相似文献   
68.
Within‐host interactions between co‐infecting parasites can significantly influence the evolution of key parasite traits, such as virulence (pathogenicity of infection). The type of interaction is expected to predict the direction of selection, with antagonistic interactions favouring more virulent genotypes and synergistic interactions less virulent genotypes. Recently, it has been suggested that virulence can further be affected by the genetic identity of co‐infecting partners (G × G interactions), complicating predictions on disease dynamics. Here, we used a natural host–parasite system including a fish host and a trematode parasite to study the effects of G × G interactions on infection virulence. We exposed rainbow trout (Oncorhynchus mykiss) either to single genotypes or to mixtures of two genotypes of the eye fluke Diplostomum pseudospathaceum and estimated parasite infectivity (linearly related to pathogenicity of infection, measured as coverage of eye cataracts) and relative cataract coverage (controlled for infectivity). We found that both traits were associated with complex G × G interactions, including both increases and decreases from single infection to co‐infection, depending on the genotype combination. In particular, combinations where both genotypes had low average infectivity and relative cataract coverage in single infections benefited from co‐infection, while the pattern was opposite for genotypes with higher performance. Together, our results show that infection outcomes vary considerably between single and co‐infections and with the genetic identity of the co‐infecting parasites. This can result in variation in parasite fitness and consequently impact evolutionary dynamics of host–parasite interactions.  相似文献   
69.
Structural and functional evolution of the P2Y12-like receptor group   总被引:1,自引:0,他引:1  
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.  相似文献   
70.
The phytochemical composition of the essential oil of Teucrium ramosissimum (aerial parts), harvested in a mountainous region of Tunisia, was analyzed. A total of 68 compounds, accounting for 99.44% of the essential oil, were identified by GC and GC/MS. The major compounds were beta-eudesmol (61; 44.52%), caryophyllene oxide (56; 9.35%), alpha-thujene (1; 5.51%), sabinene (4; 4.71%), and T-cadinol (59; 3.9%). The essential oil, which is being used in Tunisian folk medicine against infectious diseases, was tested for its antimicrobial properties against five different bacteria, and found to have weak to moderate activity, with minimal-inhibitory-concentration (MIC) and minimal-bactericidal-concentration (MBC) values in the range 0.24-0.36 and 1.3-2.9 mg/ml, resp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号