首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   18篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   9篇
  2010年   10篇
  2009年   6篇
  2008年   15篇
  2007年   10篇
  2006年   10篇
  2005年   10篇
  2004年   16篇
  2003年   13篇
  2002年   8篇
  2001年   2篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1992年   5篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
排序方式: 共有194条查询结果,搜索用时 171 毫秒
21.
The observation of preferential binding of cis-carotenoids in purple bacterial photosynthetic reaction centers versus trans-isomers in antenna pigment protein complexes has led to the hypothesis that the natural selection of stereoisomers has physiological significance. In order to test this hypothesis, we have undertaken a systematic series of investigations comparing the optical spectroscopic properties and excited state dynamics of cis and trans isomers of carotenoids. The present work compares the triplet state spectra, lifetimes, and energy transfer rates of all-trans-spheroidene and 13,14-locked-cis-spheroidene, the latter of which is incapable of isomerizing to the all-trans configuration, and therefore provides a unique opportunity to examine the triplet state properties of a structurally stable cis molecule. The data reveal only small differences in spectra, decay dynamics, and transfer times and suggest there is little intrinsic advantage in either triplet energy transfer or triplet state decay arising from the inherently different isomeric forms of cis compared to trans carotenoids.  相似文献   
22.
Tissue injury is associated with decreased cellular immunity and enhanced metabolism. Immunodepression is thought to be counteracted by interferon (IFN)-gamma, which increases human leukocyte antigen (HLA)-DR expression. Hypermetabolism could be enhanced by IFN-gamma because cytokines induce a hypermetabolic response to stress. In healthy humans, IFN-gamma enhanced HLA-DR expression without effects on glucose and fat metabolism. In the present study, we evaluated whether IFN-gamma lacks potential harmful side effects on metabolic and endocrine pathways while maintaining its beneficial effects on the immune system under conditions in which the inflammatory response system is activated. In 13 patients scheduled for major surgery, we studied HLA-DR expression on peripheral blood monocytes before surgery and postoperatively randomized the patients into an intervention and a placebo group. Subsequently, we evaluated the effects of a single dose of IFN-gamma vs. saline on short-term monocyte activation, glucose and lipid metabolism, and glucose and lipid regulatory hormones. HLA-DR expression on monocytes was restored from postoperative levels of 54% (42-60%; median and interquartiles) to 92% (91-96%) 24 h after IFN-gamma administration but stayed low in the placebo-treated patients. IFN-gamma did not affect glucose metabolism (plasma glucose, rate of appearance and disappearance of glucose) and lipid metabolism (plasma glycerol, plasma free fatty acids, and rates of appearance and disappearance of glycerol). IFN-gamma had no effect on plasma cortisol, adrenocorticotropic hormone, growth hormone, insulin, C-peptide, glucagon, epinephrine, and norepinephrine concentrations. We conclude that IFN-gamma exerts a favorable effect on cell-mediated immunity in patients after major surgery without effects on glucose and lipid metabolism.  相似文献   
23.
24.
The effects of physical manipulation of hydroponically grown plants of spinach (Spinacia oleracea L., cvs Subito and Glares) on nitrate uptake fluxes were studied in a long-term experiment (3 days), and in short-term label experiments (2 h) with 13N-nitrate and 15N-nitrate. In the long-term experiment, net nitrate uptake rate (NNUR) was measured by following the nitrate depletion in the uptake solution, which was replaced at regular intervals. In the short-term experiments, NNUR and nitrate influx were measured by simultaneous application of 13N-nitrate and 15N-nitrate. Plants were gently transferred into the labelled uptake solution, as is usually done in nutrient uptake studies. In addition, a more severe physical manipulation was carried out, including blotting of the roots, to mimic pretreatments which involve more handling of the plants prior to uptake measurements. Nitrate influx was measured immediately after physical manipulation and after 2 h of recovery. To assess the impact of the physical manipulation the experimentally determined nitrate uptake fluxes were compared with the N demand for growth, defined as relative growth rate (RGR) times plant nitrogen concentration (PNC) of parallel plants, which were left undisturbed. Nitrate influx and efflux were both subject to changes after physical manipulation of the plants. Physical handling, however, did not always result in an alteration of NNUR, which complicates the determination of the length of the recovery period. The impact of the handling and the time course of the recovery depended on the severity of the disturbance and were independent of the light conditions during the experiments. Even after a gentle transfer of the plants, recovery, in most cases, was not complete within 2 h. The data emphasise the need for minimal disturbance of plants during the last hours prior to nutrient uptake measurements.  相似文献   
25.
Phenotypically different osteoclasts may be generated from different subsets of precursors. To what extent the formation of these osteoclasts is influenced or mediated by the inflammatory cytokine TNF‐α, is unknown and was investigated in this study. The osteoclast precursors early blasts (CD31hiLy‐6C?), myeloid blasts (CD31+Ly‐6C+), and monocytes (CD31?Ly‐6Chi) were sorted from mouse bone marrow using flow cytometry and cultured with M‐CSF and RANKL, with or without TNF‐α. Surprisingly, TNF‐α prevented the differentiation of TRAcP+ osteoclasts generated from monocytes on plastic; an effect not seen with early blasts and myeloid blasts. This inhibitory effect could not be prevented by other cytokines such as IL‐1β or IL‐6. When monocytes were pre‐cultured with M‐CSF and RANKL followed by exposure to TNF‐α, a stimulatory effect was found. TNF‐α also stimulated monocytes’ osteoclastogenesis when the cells were seeded on bone. Gene expression analysis showed that when TNF‐α was added to monocytes cultured on plastic, RANK, NFATc1, and TRAcP were significantly down‐regulated while TNF‐αR1 and TNF‐αR2 were up‐regulated. FACS analysis showed a decreased uptake of fluorescently labeled RANKL in monocyte cultures in the presence of TNF‐α, indicating an altered ratio of bound‐RANK/unbound‐RANK. Our findings suggest a diverse role of TNF‐α on monocytes’ osteoclastogenesis: it affects the RANK‐signaling pathway therefore inhibits osteoclastogenesis when added at the onset of monocyte culturing. This can be prevented when monocytes were pre‐cultured with M‐CSF and RANKL, which ensures the binding of RANKL to RANK. This could be a mechanism to prevent unfavorable monocyte‐derived osteoclast formation away from the bone.
  相似文献   
26.
In the vast majority of cystic fibrosis (CF) patients, deletion of residue F508 from CFTR is the cause of disease. F508 resides in the first nucleotide binding domain (NBD1) and its absence leads to CFTR misfolding and degradation. We show here that the primary folding defect arises during synthesis, as soon as NBD1 is translated. Introduction of either the I539T or G550E suppressor mutation in NBD1 partially rescues ΔF508 CFTR to the cell surface, but only I539T repaired ΔF508 NBD1. We demonstrated rescue of folding and stability of NBD1 from full-length ΔF508 CFTR expressed in cells to isolated purified domain. The co-translational rescue of ΔF508 NBD1 misfolding in CFTR by I539T advocates this domain as the most important drug target for cystic fibrosis.  相似文献   
27.
The Wnt pathway tumor-suppressor protein Axin coordinates the formation of a critical multiprotein destruction complex that serves to downregulate β-catenin protein levels, thereby preventing target gene activation. Given the lack of structural information on some of the major functional parts of Axin, it remains unresolved how the recruitment and positioning of Wnt pathway kinases, such as glycogen synthase kinase 3β, are coordinated to bring about β-catenin phosphorylation. Using various biochemical and biophysical methods, we demonstrate here that the central region of Axin that is implicated in binding glycogen synthase kinase 3β and β-catenin is natively unfolded. Our results support a model in which the unfolded nature of these critical scaffolding regions in Axin facilitates dynamic interactions with a kinase and its substrate, which in turn act upon each other.  相似文献   
28.
We show that a comprehensive set of 16 peroxisomal membrane proteins (PMPs) encompassing all types of membrane topologies first target to the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. These PMPs insert into the ER membrane via the protein import complexes Sec61p and Get3p (for tail-anchored proteins). This trafficking pathway is representative for multiplying wild-type cells in which the peroxisome population needs to be maintained, as well as for mutant cells lacking peroxisomes in which new peroxisomes form after complementation with the wild-type version of the mutant gene. PMPs leave the ER in a Pex3p-Pex19p–dependent manner to end up in metabolically active peroxisomes. These results further extend the new concept that peroxisomes derive their basic framework (membrane and membrane proteins) from the ER and imply a new functional role for Pex3p and Pex19p.  相似文献   
29.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on the carbon requirement for root respiration of plants to predict effects of elevated [CO2] on the carbon budget of natural and managed systems.There is insufficient information to support the contentention that an increase in the concentration of CO2 in the atmosphere will enhance the CO2 concentration in the soil to an extent that is likely to affect root respiration. Moreover, there is no convincing evidence for a direct effect of elevated atmospheric [CO2] on the rate of root respiration per unit root mass or the fraction of carbon required for root respiration. However, there are likely to be indirect effects of elevated [CO2] on the carbon requirement of plants in natural systems.Firstly, it is very likely that the carbon requirement of root respiration relative to that fixed in photosynthesis will increase when elevated [CO2] induces a decrease in nutrient status of the plants. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, these are in fact indirect effects. The increase in root weight ratio is due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. This will decrease the specific rate of root respiration, but increase the carbon requirement as a fraction of the carbon fixed in photosynthesis. It is likely that these effects will be minor in systems where the nutrient supply is very high, e.g. in many managed arable systems, and increase with decreasing soil fertility, i.e. in many natural systems.Secondly, a decrease in rainfall in some parts of the world may cause a shortage in water supply which favours the carbon partitioning to roots. Water stress is likely to reduce rates of root respiration per unit root mass, but enhance the fraction of total assimilates required for root respiration, due to greater allocation of biomass to roots.Increased temperatures are unlikely to affect the specific rate of root respiration in all species. Broadly generalized, the effect of temperature on biomass allocation is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. The root respiration of some species acclimates to growth temperature, so that the effect of global temperature rise is entirely accounted for by the effect of temperature on biomass allocation. The specific rate of root respiration of other species will increase with global warming. In response to global warming the carbon requirement of roots is likely to decrease in temperate regions, when temperatures are suboptimal for the roots' capacity to acquire water. Here global warming will induce a smaller biomass allocation to the roots. Conversely, the carbon requirements are more likely to increase in mediterranean environments, where temperatures are often supraoptimal and a rise in temperature will induce greater allocation of biomass to the roots.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号