首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   627篇
  免费   17篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   4篇
  2019年   7篇
  2018年   15篇
  2017年   6篇
  2016年   15篇
  2015年   23篇
  2014年   32篇
  2013年   45篇
  2012年   33篇
  2011年   54篇
  2010年   19篇
  2009年   17篇
  2008年   22篇
  2007年   34篇
  2006年   31篇
  2005年   21篇
  2004年   17篇
  2003年   27篇
  2002年   14篇
  2001年   10篇
  2000年   8篇
  1999年   14篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1993年   5篇
  1992年   14篇
  1991年   10篇
  1990年   6篇
  1988年   7篇
  1986年   8篇
  1985年   5篇
  1984年   10篇
  1980年   4篇
  1979年   3篇
  1977年   4篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1972年   5篇
  1970年   7篇
  1969年   3篇
  1968年   4篇
  1967年   4篇
  1966年   3篇
  1964年   11篇
排序方式: 共有645条查询结果,搜索用时 358 毫秒
81.
Analysis of TRPC3-interacting proteins by tandem mass spectrometry   总被引:1,自引:0,他引:1  
Mammalian transient receptor potential canonical (TRPC) channels are a family of nonspecific cation channels that are activated in response to stimulation of phospholipase C (PLC)-dependent hydrolysis of the membrane lipid phosphatidylinositol 4,5-bisphosphate. Despite extensive studies, the mechanism(s) involved in regulation of mammalian TRPC channels remains unknown. Presence of various protein-interacting domains in TRPC channels have led to the suggestion that they associate with proteins that are involved in their function and regulation. This study was directed toward identifying the proteins associated with native TRPC3 using a shotgun proteomic approach. Anti-TRPC3 antibody was used to immunoprecipitate TRPC3 from solubilized rat brain crude membranes under conditions that allow retention of TRPC3 function. Proteins in the TRPC3 (using anti-TRPC3 antibody) and control (using rabbit IgG) immunoprecipitates were separated by SDS-PAGE, the gel was sectioned, and the resolved proteins were digested by trypsin in situ. After extraction of the peptides, the peptides were separated by HPLC and sequences derived by MS/MS. Analysis of the data revealed 64 specific TRPC3-associated proteins which can be grouped in terms of their cellular location and involvement in specific cellular function. Many of the proteins identified have been previously reported as TRPC3-regulatory proteins, such as IP3Rs and vesicle trafficking proteins. In addition, we report novel putative TRPC3-interacting proteins, including those involved in protein endocytosis and neuronal growth. To our knowledge, this is the first comprehensive proteomic analysis of a native TRPC channel. These data reveal potential TRPC3 regulatory proteins and provide novel insights of the mechanism(s) regulating TRPC3 channels as well as the possible cellular functions where the channel might be involved.  相似文献   
82.
Peroxiredoxins (Prx) are ubiquitous thiol-dependent peroxidases capable of reducing a broad range of toxic peroxides and peroxinitrites. A cysteinyl residue of peroxiredoxins reacts with the peroxides as primary catalytic center and oxidizes to sulfenic acid. The regeneration of the reduced form of Prx is required as a next step to allow its entry into next catalytic cycle. Several proteins, such as thioredoxin, glutaredoxin, cyclophilin, among others, are known to facilitate the regeneration of the reduced (catalytically active) form of Prx in plants. Based on the cysteine residues conserved in the deduced amino acid sequence and their catalytic mechanisms, four groups of peroxiredoxins have been distinguished in plants, namely, 1-Cys Prx, 2-Cys Prx, Type II Prx and Prx Q. Peroxiredoxins are known to play an important role in combating the reactive oxygen species generated at the level of electron transport activities in the plant exposed to different types of biotic and abiotic stresses. In addition to their role in antioxidant defense mechanisms in plants, they also modulate redox signaling during development and adaptation. Besides these general properties, peroxiredoxins have been shown to protect DNA from damage in vitro and in vivo. They also regulate metabolism in thylakoids and mitochondria. The present review summarizes the most updated information on the structure and catalysis of Prx and their functional importance in plant metabolism.  相似文献   
83.
The ability of five different types of bacterial strains isolated from a distillery mill site was analyzed for decolorization of distillery spent wash. 16S rDNA based denaturing gradient gel electrophoresis (DGGE) and amplified random DNA restriction analysis (ARDRA) were used to characterize the bacterial strains. One of the isolates had higher capability to reduce color (21%) and chemical oxygen demand (COD) (30%) was finally identified by 16S rDNA sequence analysis as Bacillus sp. Different parameters such as pH, temperature, aeration,% carbon,% nitrogen, inoculum size and incubation time were optimized by the Taguchi approach to achieve maximum decolorization of distillery spent wash by the Bacillus sp. Reduction in color (85%) and COD (90%) was observed within 12 h after optimization by the Taguchi method. The significant factor in the optimization process was duration followed by inoculum size to attain maximum color reduction. The Taguchi approach proved to be a reliable tool in optimizing culture conditions and analyzing interaction effects of process parameters in achieving the best possible combination for maximum decolorization of the distillery spent wash.  相似文献   
84.

Background  

The salivary mucin MUC7 (previously known as MG2) can adhere to various strains of streptococci that are primary colonizers and predominant microorganisms of the oral cavity. Although there is a growing interest in interaction between oral pathogens and salivary mucins, studies reporting the specific binding sites on the bacteria are rather limited. Identification and characterization of the specific interacting proteins on the bacterial cell surface, termed adhesins, are crucial to further understand host-pathogen interactions.  相似文献   
85.
86.
87.
Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the surface of Plasmodium falciparum merozoites, is a promising malaria vaccine candidate. MSP2 is intrinsically unstructured and forms amyloid-like fibrils in solution. As this propensity of MSP2 to form fibrils in solution has the potential to impede its development as a vaccine candidate, finding an inhibitor that inhibits fibrillogenesis may enhance vaccine development. We have shown previously that EGCG inhibits the formation of MSP2 fibrils. Here we show that EGCG can alter the β-sheet-like structure of the fibril and disaggregate pre-formed fibrils of MSP2 into soluble oligomers. The fibril remodelling effects of EGCG and other flavonoids were characterised using Thioflavin T fluorescence assays, electron microscopy and other biophysical methods.  相似文献   
88.
The 23S rRNA gene of Coxiella burnetii, the agent of Q fever in humans, contains an unusually high number of conserved, selfish genetic elements, including two group I introns, termed Cbu.L1917 (L1917) and Cbu.L1951 (L1951). To better understand the role that introns play in Coxiella's biology, we determined the intrinsic stability time periods (in vitro half-lives) of the encoded ribozymes to be ~15 days for L1917 and ~5 days for L1951, possibly due to differences in their sizes (551 and 1,559 bases, respectively), relative degrees of compactness of the respective RNA structures, and amounts of single-stranded RNA. In vivo half-lives for both introns were also determined to be ~11 min by the use of RNase protection assays and an Escherichia coli model. Intron RNAs were quantified in synchronous cultures of C. burnetii and found to closely parallel those of 16S rRNA; i.e., ribozyme levels significantly increased between days 0 and 3 and then remained stable until 8 days postinfection. Both 16S rRNA and ribozyme levels fell during the stationary and death phases (days 8 to 14). The marked stability of the Coxiella intron RNAs is presumably conferred by their association with ribosomes, a stoichiometric relationship that was determined to be one ribozyme, of either type, per 500 ribosomes. Inaccuracies in splicing (exon 2 skipping) were found to increase during the first 5 days in culture, with a rate of approximately one improperly spliced 23S rRNA per 1.3 million copies. The in vitro efficiency of L1917 intron splicing was significantly enhanced in the presence of a recombinant Coxiella RNA DEAD-box helicase (CBU_0670) relative to that of controls, suggesting that this enzyme may serve as an intron RNA splice facilitator in vivo.  相似文献   
89.
90.
In malaria endemic regions, a fetus is often exposed in utero to Plasmodium falciparum blood-stage Ags. In some newborns, this can result in the induction of immune suppression. We have previously shown these modulated immune responses to persist postnatally, with a subsequent increase in a child's susceptibility to infection. To test the hypothesis that this immune suppression is partially mediated by malaria-specific regulatory T cells (T(regs)) in utero, cord blood mononuclear cells (CBMC) were obtained from 44 Kenyan newborns of women with and without malaria at delivery. CD4(+)CD25(lo) T cells and CD4(+)CD25(hi) FOXP3(+) cells (T(regs)) were enriched from CBMC. T(reg) frequency and HLA-DR expression on T(regs) were significantly greater for Kenyan as compared with North American CBMC (p < 0.01). CBMC/CD4(+) T cells cultured with P. falciparum blood-stage Ags induced production of IFN-γ, IL-13, IL-10, and/or IL-5 in 50% of samples. Partial depletion of CD25(hi) cells augmented the Ag-driven IFN-γ production in 69% of subjects with malaria-specific responses and revealed additional Ag-reactive lymphocytes in previously unresponsive individuals (n = 3). Addition of T(regs) to CD4(+)CD25(lo) cells suppressed spontaneous and malaria Ag-driven production of IFN-γ in a dose-dependent fashion, until production was completely inhibited in most subjects. In contrast, T(regs) only partially suppressed malaria-induced Th2 cytokines. IL-10 or TGF-β did not mediate this suppression. Thus, prenatal exposure to malaria blood-stage Ags induces T(regs) that primarily suppress Th1-type recall responses to P. falciparum blood-stage Ags. Persistence of these T(regs) postnatally could modify a child's susceptibility to malaria infection and disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号