首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   627篇
  免费   17篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   4篇
  2019年   7篇
  2018年   15篇
  2017年   6篇
  2016年   15篇
  2015年   23篇
  2014年   32篇
  2013年   45篇
  2012年   33篇
  2011年   54篇
  2010年   19篇
  2009年   17篇
  2008年   22篇
  2007年   34篇
  2006年   31篇
  2005年   21篇
  2004年   17篇
  2003年   27篇
  2002年   14篇
  2001年   10篇
  2000年   8篇
  1999年   14篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1993年   5篇
  1992年   14篇
  1991年   10篇
  1990年   6篇
  1988年   7篇
  1986年   8篇
  1985年   5篇
  1984年   10篇
  1980年   4篇
  1979年   3篇
  1977年   4篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1972年   5篇
  1970年   7篇
  1969年   3篇
  1968年   4篇
  1967年   4篇
  1966年   3篇
  1964年   11篇
排序方式: 共有645条查询结果,搜索用时 62 毫秒
41.
42.
Alkalophilic bacterial consortium developed by continuous enrichment in the chemostat in presence of 4-chlorosalicylic acid as sole source of carbon and energy contained six bacterial strains, Micrococcus luteus (csa101), Deinococcus radiothilus (csa102), csa103 (Burkholderia gladioli), Alloiococcus otilis (csa104), Micrococcus diversus (csa105), Micrococcus luteus (csa106), identified by the Biolog test method. The strains were tested for utilization of organic compounds in which one of the strains (csa101) had higher potency to utilize dibenzofuran (DF) as sole carbon and energy source identified as Serratia marcescens on the basis of 16S rDNA. The degradation of DF by bacterial strain proceeded through an oxidative route as indicated by 2,2′3-trihydroxybiphenyl, 2-hydroxy-6-(2-hydroxyphenyl)-6-oxo-2,4-hexadienoic acid, salicylic acid, and catechol, which was identified by gas chromatography–mass spectrometry.  相似文献   
43.
Low flow postural tachycardia syndrome (POTS), is associated with reduced nitric oxide (NO) activity assumed to be of endothelial origin. We tested the hypothesis that cutaneous microvascular neuronal NO (nNO) is impaired, rather than endothelial NO (eNO), in POTS. We performed three sets of experiments on subjects aged 22.5 +/- 2 yr. We used laser-Doppler flowmetry response to sequentially increase acetylcholine (ACh) doses and the local cutaneous heating response of the calf as bioassays for NO. During local heating we showed that when the selective neuronal nNO synthase (nNOS) inhibitor N(omega)-nitro-L-arginine-2,4-L-diaminobutyric amide (N(omega), 10 mM) was delivered by intradermal microdialysis, cutaneous vascular conductance (CVC) decreased by an amount equivalent to the largest reduction produced by the nonselective NO synthase (NOS) inhibitor nitro-L-arginine (NLA, 10 mM). We demonstrated that the response to ACh was minimally attenuated by nNOS blockade using N(omega) but markedly attenuated by NLA, indicating that eNO largely comprises the receptor-mediated NO release by ACh. We further demonstrated that the ACh dose response was minimally reduced, whereas local heat-mediated NO-dependent responses were markedly reduced in POTS compared with control subjects. This is consistent with intact endothelial function and reduced NO of neuronal origin in POTS. The local heating response was highly attenuated in POTS [60 +/- 6 percent maximum CVC(%CVC(max))] compared with control (90 +/- 4 %CVC(max)), but the plateau response decreased to the same level with nNOS inhibition (50 +/- 3 %CVC(max) in POTS compared with 47 +/- 2 %CVC(max)), indicating reduced nNO bioavailability in POTS patients. The data suggest that nNO activity but not NO of endothelial NOS origin is reduced in low-flow POTS.  相似文献   
44.
Upright posture and lower body negative pressure (LBNP) both induce reductions in central blood volume. However, regional circulatory responses to postural changes and LBNP may differ. Therefore, we studied regional blood flow and blood volume changes in 10 healthy subjects undergoing graded lower-body negative pressure (-10 to -50 mmHg) and 8 subjects undergoing incremental head-up tilt (HUT; 20 degrees , 40 degrees , and 70 degrees ) on separate days. We continuously measured blood pressure (BP), heart rate, and regional blood volumes and blood flows in the thoracic, splanchnic, pelvic, and leg segments by impedance plethysmography and calculated regional arterial resistances. Neither LBNP nor HUT altered systolic BP, whereas pulse pressure decreased significantly. Blood flow decreased in all segments, whereas peripheral resistances uniformly and significantly increased with both HUT and LBNP. Thoracic volume decreased while pelvic and leg volumes increased with HUT and LBNP. However, splanchnic volume changes were directionally opposite with stepwise decreases in splanchnic volume with LBNP and stepwise increases in splanchnic volume during HUT. Splanchnic emptying in LBNP models regional vascular changes during hemorrhage. Splanchnic filling may limit the ability of the splanchnic bed to respond to thoracic hypovolemia during upright posture.  相似文献   
45.
Treatment of the paper factory effluent was done with free and immobilized cells of a phenol degrading Alcaligenes sp. d(2). The free cells could bring a maximum of 99% reduction in phenol and 40% reduction in chemical oxygen demand (COD) after 32 and 20 h of treatment, respectively. In the case of immobilized cells, a maximum of 99% phenol reduction and 70% COD reduction was attained after 20 h of treatment under batch process. In the continuous mode of operation using packed bed reactor, the strain was able to give 99% phenol removal and 92% COD reduction in 8h of residence time The optimum flow rate was 2.5 ml/h and the half life period was 76 h. Even after the complete removal of phenol, the strain could further enhance reduction in chemical oxygen demand, which clearly indicated that in the paper factory effluent, this strain could also oxidize organic matter other than phenol.  相似文献   
46.
47.
48.
49.
50.
Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slow reuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1 mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGs-induced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brain mitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号