首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   13篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   11篇
  2013年   10篇
  2012年   16篇
  2011年   22篇
  2010年   4篇
  2009年   11篇
  2008年   20篇
  2007年   17篇
  2006年   10篇
  2005年   13篇
  2004年   8篇
  2003年   12篇
  2002年   9篇
  2001年   5篇
  2000年   2篇
  1997年   2篇
  1995年   1篇
  1993年   2篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
11.
High-temperature biotrickling filtration of hydrogen sulphide   总被引:1,自引:0,他引:1  
Biofiltration of malodorous reduced sulphur compounds such as hydrogen sulphide has been confined to emissions that are at temperatures below 40°C despite the fact that there are many industrial emissions (e.g. in the pulp and paper industry) at temperatures well above 40°C. This paper describes our study on the successful treatment of hydrogen sulphide gas at temperatures of 40, 50, 60 and 70°C using a microbial community obtained from a hot spring. Three biotrickling filter (BTF) systems were set up in parallel for a continuous run of 9 months to operate at three different temperatures, one of which was always at 40°C as a mesophilic control and the other two were for exploring high-temperature operation up to 70°C. The continuous experiment and a series of batch experiments in glass bottles (250 ml) showed that addition of glucose and monosodium glutamate enhanced thermophilic biofiltration of hydrogen sulphide gas and a removal rate of 40 g m−3 h−1 was achieved at 70°C. We suggest that the glucose is acting as a carbon source for the existing microbial community in the BTFs, whereas glutamate is acting as a compatible solute. The use of such organic compounds to enhance biodegradation of hydrogen sulphide, particularly at high temperatures, has not been demonstrated to our knowledge and, hence, has opened up a range of possibilities for applying biofiltration to hot gas effluent.  相似文献   
12.
Yeast cell walls are critical for maintaining cell integrity, particularly in the face of challenges such as growth in mammalian hosts. The pathogenic fungus Cryptococcus neoformans additionally anchors its polysaccharide capsule to the cell surface via alpha(1-3) glucan in the wall. Cryptococcal cells disrupted in their alpha glucan synthase gene were sensitive to stresses, including temperature, and showed difficulty dividing. These cells lacked surface capsule, although they continued to shed capsule material into the environment. Electron microscopy showed that the alpha glucan that is usually localized to the outer portion of the cell wall was absent, the outer region of the wall was highly disorganized, and the inner region was hypertrophic. Analysis of cell wall composition demonstrated complete loss of alpha glucan accompanied by a compensatory increase in chitin/chitosan and a redistribution of beta glucan between cell wall fractions. The mutants were unable to grow ina mouse model of infection, but caused death in nematodes. These studies integrate morphological and biochemical investigations of the role of alpha glucan in the cryptococcal cell wall.  相似文献   
13.
14.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes play essential roles in catalyzing intracellular membrane fusion events although the assembly pathway and molecular arrangement of SNARE complexes in membrane fusion reactions are not well understood. Here we monitored interactions of the R-SNARE protein Sec22 through a cysteine scanning approach and detected efficient formation of cross-linked Sec22 homodimers in cellular membranes when cysteine residues were positioned in the SNARE motif or C terminus of the transmembrane domain. When specific Sec22 cysteine derivatives are present on both donor COPII vesicles and acceptor Golgi membranes, the formation of disulfide cross-links provide clear readouts on trans- and cis-SNARE arrangements during this fusion event. The Sec22 transmembrane domain was required for efficient homodimer formation and for membrane fusion suggesting a functional role for Sec22 homodimers. We propose that Sec22 homodimers promote assembly of higher-order SNARE complexes to catalyze membrane fusion. Sec22 is also reported to function in macroautophagy and in formation of endoplasmic reticulum-plasma membrane contact sites therefore homodimer assembly may regulate Sec22 activity across a range of cellular processes.  相似文献   
15.

Background  

A common survival strategy of microorganisms subjected to stress involves the generation of phenotypic heterogeneity in the isogenic microbial population enabling a subset of the population to survive under stress. In a recent study, a mycobacterial population of M. smegmatis was shown to develop phenotypic heterogeneity under nutrient depletion. The observed heterogeneity is in the form of a bimodal distribution of the expression levels of the Green Fluorescent Protein (GFP) as reporter with the gfp fused to the promoter of the rel gene. The stringent response pathway is initiated in the subpopulation with high rel activity.  相似文献   
16.

Introduction

The critical role of bacteria in the pathogenesis of ulcerative colitis (UC) is well recognized, but an individual causative microorganism has not been singled out so far. Campylobacter concisus and other non-jejuni species of Campylobacter have been implicated as putative aetiological agents in inflammatory bowel disease in children, but such studies have not been addressed in adults. This study investigated the prevalence of Campylobacter species in colonic biopsy samples from adults with UC and healthy controls.

Methods

Adult patients who were undergoing diagnostic colonoscopy were recruited for the study, which included 69 patients with histologically proven UC and 65 healthy controls. DNA was extracted from the biopsy samples and subjected to Campylobacter genus specific and Campylobacter concisus specific polymerase chain reaction and sequencing.

Results

Detection of all Campylobacter DNA utilising genus specific primers was significantly higher in cases of UC, with a prevalence of 73.9% (51/69) compared to 23.1% (15/65) in controls (p = 0.0001). Nested PCR for C. concisus DNA was positive in 33.3% (23/69) of biopsy samples from subjects with UC, which was significantly higher than the prevalence rate of 10.8% (7/65) from controls (p = 0.0019). Sequencing of the remaining Campylobacter positive samples revealed that Campylobacter ureolyticus was positive in 21.7% (15/69) of samples from UC subjects as opposed to 3.1% (2/65) in controls (p = 0.0013). Mixed Campylobacter species were more common in UC patients, 20.3% (14/69) as compared to controls 4.6% (3/65) (p = 0.0084).

Conclusion

The higher prevalence of Campylobacter genus and more specifically C. concisus and C. ureolyticus in biopsy samples from adults with UC suggests these genera of bacteria may be involved in the chronic inflammation that is characteristically seen in UC. To the best of our knowledge this is the first report of this association of C. concisus and C. ureolyticus with UC in adults.  相似文献   
17.
Earlier, we reported that the bacteriophage lambda P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this lambda P gene-mediated lethality. In this paper, we show that under the lambda P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94 % linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from lambda P gene-mediated killing and complements E. coli dnaAts46 at 42 degrees C. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to lambda P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.  相似文献   
18.
19.
20.
Dasgupta I  Gao X  Fox GE 《Biopolymers》2012,97(3):155-164
The antisense DNA sequence of mature mouse micro RNA, miR341, includes three repeats of the tetranucleotide (GACC). The -GAC- repeat is known to form a parallel duplex, in acidic environments. The thermal melting profile of miR341 DNA, at pH 4, 5, and 6 indicates the formation of a very stable structure, which loses its stability when pH is increased. Thus, the addition of a cytosine at the 3' end of the (GAC) motif preserves the molecule's potential to fold into an unusual structure at low pH. The effect of modifying the nucleotide composition of the GACC sequence on the secondary structures formed by oligomers containing seven tandem repeats of the altered motifs was examined here. UV melting profiles were determined, as a function of pH, for 28-mers of the two series (GAXC)(7) and (GACX)(7) (X= A/C/T/G)(.) The sequence (GACC)(7) was found to be extremely sensitive to pH variations, with a stable structure formed at pH 5 (T(m) ≥ 60°C). NMR spectroscopy established that the low pH structure is not B-DNA. (GACA)(7) and (GACT)(7) also formed stable structures at low pH but the addition of guanine at the 3'end, as seen in the (GACG) series resulted in the loss of this property. Introducing a break in the 5'-GAC-3' motif, explored in the (GAXC) series, also inhibits formation of stable structures under acidic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号