首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   67篇
  856篇
  2024年   3篇
  2022年   13篇
  2021年   21篇
  2020年   15篇
  2019年   13篇
  2018年   22篇
  2017年   8篇
  2016年   19篇
  2015年   22篇
  2014年   28篇
  2013年   41篇
  2012年   60篇
  2011年   67篇
  2010年   34篇
  2009年   33篇
  2008年   32篇
  2007年   35篇
  2006年   40篇
  2005年   38篇
  2004年   33篇
  2003年   42篇
  2002年   41篇
  2001年   11篇
  2000年   5篇
  1999年   11篇
  1998年   8篇
  1997年   12篇
  1996年   9篇
  1995年   5篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   9篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1974年   3篇
  1968年   3篇
  1967年   4篇
  1965年   6篇
排序方式: 共有856条查询结果,搜索用时 15 毫秒
81.
Antioxidant and antiproliferative activity of curcumin semicarbazone   总被引:4,自引:0,他引:4  
A new semicarbazone derivative of curcumin (CRSC) was synthesized and examined for its antioxidant, antiproliferative, and antiradical activity and compared with those of curcumin (CR). The antioxidant activity was tested by their ability to inhibit radiation induced lipid peroxidation in rat liver microsomes. The antiproliferative activity was tested by studying the in vitro activity of CRSC against estrogen dependant breast cancer cell line MCF-7. Kinetics of reaction of (2,2'-diphenyl-1-picrylhydrazide) DPPH, a stable hydrogen abstracting free radical was studied to measure the antiradical activity using stopped-flow spectrophotometer. Finally one-electron oxidized radicals of CRSC were generated and characterized by pulse radiolysis. The results suggest that the probable site of attack for CRSC is both the phenolic OH and the imine carbonyl position. CRSC shows efficient antioxidant and antiproliferative activity although its antiradical activity is less than that of CR.  相似文献   
82.
A mononuclear (1:1) copper complex of curcumin, a phytochemical from turmeric, was synthesized and examined for its superoxide dismutase (SOD) activity. The complex was characterized by elemental analysis, IR, NMR, UV-VIS, EPR, mass spectroscopic methods and TG-DTA, from which it was found that a copper atom is coordinated through the keto-enol group of curcumin along with one acetate group and one water molecule. Cyclic voltammetric studies of the complex showed a reversible Cu(2+)/Cu(+) couple with a potential of 0.402 V vs NHE. The Cu(II)-curcumin complex is soluble in lipids and DMSO, and insoluble in water. It scavenges superoxide radicals with a rate constant of 1.97 x 10(5) M(-1) s(-1) in DMSO determined by stopped-flow spectrometer. Subsequent to the reaction with superoxide radicals, the complex was found to be regenerated completely, indicating catalytic activity in neutralizing superoxide radicals. Complete regeneration of the complex was observed, even when the stoichiometry of superoxide radicals was 10 times more than that of the complex. This was further confirmed by EPR monitoring of superoxide radicals. The SOD mimicking activity of the complex was determined by xanthine/xanthine oxidase assay, from which it has been found that 5 microg of the complex is equivalent to 1 unit of SOD. The complex inhibits radiation-induced lipid peroxidation and shows radical-scavenging ability. It reacts with DPPH radicals with rate constant 10 times less than that of curcumin. Pulse radiolysis-induced one-electron oxidation of the complex by azide radicals in TX-100 micellar solutions produced strongly absorbing ( approximately 500 nm) phenoxyl radicals, indicating that the phenolic moiety of curcumin remained intact on complexation with copper. The results confirm that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential. Quantum chemical calculations with density functional theory have been performed to support the experimental observations.  相似文献   
83.
84.
Grieco TM  Malhotra JD  Chen C  Isom LL  Raman IM 《Neuron》2005,45(2):233-244
Voltage-gated sodium channels with "resurgent" kinetics are specialized for high-frequency firing. The alpha subunits interact with a blocking protein that binds open channels upon depolarization and unbinds upon repolarization, producing resurgent sodium current. By limiting classical inactivation, the cycle of block and unblock shortens refractory periods. To characterize the blocker in Purkinje neurons, we briefly exposed inside-out patches to substrate-specific proteases. Trypsin and chymotrypsin each removed resurgent current, consistent with established roles for positively charged and hydrophobic/aromatic groups in blocking sodium channels. In Purkinje cells, the only known sodium channel-associated subunit that has a cytoplasmic sequence with several positive charges and clustered hydrophobic/aromatic residues is beta4 (KKLITFILKKTREK; beta4(154-167)). After enzymatic removal of block, beta4(154-167) fully reconstituted resurgent current, whereas scrambled or point-mutated peptides were ineffective. In CA3 pyramidal neurons, which lack beta4 and endogenous block, beta4(154-167) generated resurgent current. Thus, beta4 may be the endogenous open-channel blocker responsible for resurgent kinetics.  相似文献   
85.
Cell-cell adhesion is an extremely important phenomenon as it influences several biologically important processes such as inflammation, cell migration, proliferation, differentiation and even cancer metastasis. Furthermore, proteins involved in cell-cell adhesion are also important from the perspective of facilitating better drug delivery across epithelia. The adhesion forces imparted by proteins involved in cell-cell adhesion have been the focus of research for sometime. However, with the advent of nanotechnological techniques such as the atomic force microscopy (AFM), we can now quantitatively probe these adhesion forces not only at the cellular but also molecular level. Here, we review the structure and function of tight junction proteins, highlighting some mechanistic studies performed to quantify the adhesion occurring between these proteins and where possible their association with human diseases. In particular, we will highlight two important experimental techniques, namely the micropipette step pressure technique and the AFM that allow us to quantify these adhesion forces at both the cellular and molecular levels, respectively.  相似文献   
86.
The protective role of reactive oxygen scavengers against photodamage was studied in isolated photosystem (PS) I submembrane fractions illuminated (2000 microE x m(-2) x s(-1)) for various periods at 4 degrees C. The photochemical activity of the submembrane fractions measured as P700 photooxidation was significantly protected in the presence of histidine or n-propyl gallate. Chlorophyll photobleaching resulting in a decrease of absorbance and fluorescence, and a blue-shift of both absorbance and fluorescence maximum in the red region, was also greatly delayed in the presence of these scavengers. Western blot analysis revealed the light harvesting antenna complexes of PSI, Lhca2 and Lhca1, were more susceptible to strong light when compared to Lhca3 and Lhca4. The reaction-center proteins PsaB, PsaC, and PsaE were most sensitive to strong illumination while other polypeptides were less affected. Addition of histidine or n-propyl gallate lead to significant protection of reaction-center proteins as well as Lhca against strong illumination. Circular dichroism (CD) spectra revealed that the alpha-helix content decreased with increasing period of light exposure, whereas beta-strands, turns, and unordered structure increased. This unfolding was prevented with the addition of histidine or n-propyl gallate even after 10 h of strong illumination. Catalase or superoxide dismutase could not minimize the alteration of PSI photochemical activity and structure due to photodamage. The specific action of histidine and n-propyl gallate indicates that 1O2 was the main form of reactive oxygen species responsible for strong light-induced damage in PSI submembrane fractions.  相似文献   
87.
In the preceding, accompanying article, we present models of the structure and voltage-dependent gating mechanism of the KvAP bacterial K+ channel that are based on three types of evidence: crystal structures of portions of the KvAP protein, theoretical modeling criteria for membrane proteins, and biophysical studies of the properties of native and mutated voltage-gated channels. Most of the latter experiments were performed on the Shaker K+ channel. Some of these data are difficult to relate directly to models of the KvAP channel's structure due to differences in the Shaker and KvAP sequences. We have dealt with this problem by developing new models of the structure and gating mechanism of the transmembrane and extracellular portions of the Shaker channel. These models are consistent with almost all of the biophysical data. In contrast, much of the experimental data are incompatible with the "paddle" model of gating that was proposed when the KvAP crystal structures were first published. The general folding pattern and gating mechanisms of our current models are similar to some of our earlier models of the Shaker channel.  相似文献   
88.
89.
In ungulates the process of chemical communication by urinary scent marking has been directly related to reproductive dominance, territorial defense and proximity to resources. The differences in the frequency of urine marking and chemical composition of urine of males Antelope cervicapra before, during and after the dominance hierarchy period were assessed. The variations in the urine marking and its chemical profiles of dominant males (n = 9), bachelors (n = 5) and sub-adult males (n = 5) were compared to find out how the dominance hierarchy influences the confined blackbuck herd under semi-natural captive conditions. The frequency of urine marking is significantly higher (p < 0.001) in dominant males. Twenty-eight major constituents were identified in the urine of dominant males (before, during and after the dominance hierarchy period), bachelor and sub-adult males. Among these, three specific compounds namely, 3-hexanone (I), 6-methyl-5-hepten-2-one (II) and 4-methyl-3-heptanone (III) were seen only in dominant males urine during the dominance hierarchy period. Based on the behavioural observation and the unique chemical constituents in the urine, it is concluded that the dominant male scent odor suppresses aggression, scent marking, scent production and territorial patrolling activities of subordinate males, through which the dominant male establish their hierarchy and attains success in reproduction.  相似文献   
90.
We synthesized a series of acylhydrazone compounds bearing naturally occurring amino acids’ side chains as HIV assembly inhibitors. Biological evaluation indicated that the compounds had anti-SIV and capsid assembly inhibitory activities. The structure–activity relationship (SAR) study showed that compounds bearing proper aromatic side chains had potential antiviral activities. The molecular modeling experiments revealed the molecular mechanism that they could bind to CA in the same manner as CAP-1 and occupy two more grooves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号