首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   4篇
  2023年   1篇
  2021年   5篇
  2020年   1篇
  2017年   5篇
  2016年   1篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   12篇
  2010年   2篇
  2009年   7篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1981年   3篇
  1969年   2篇
  1965年   1篇
  1937年   1篇
  1925年   1篇
  1920年   1篇
排序方式: 共有104条查询结果,搜索用时 296 毫秒
11.
The aims of this study were designed to determine whether liraglutide, a long-acting glucagon-like peptide, could reverse the adverse effects of a diet high in fat that also contained trans-fat and high-fructose corn syrup (ALIOS diet). Specifically, we examined whether treatment with liraglutide could reduce hepatic insulin resistance and steatosis as well as improve cardiac function. Male C57BL/6J mice were pair fed or fed ad libitum either standard chow or the ALIOS diet. After 8 wk the mice were further subdivided and received daily injections of either liraglutide or saline for 4 wk. Hyperinsulinemic-euglycemic clamp studies were performed after 6 wk, revealing hepatic insulin resistance. Glucose tolerance and insulin resistance tests were performed at 8 and 12 wk prior to and following liraglutide treatment. Liver pathology, cardiac measurements, blood chemistry, and RNA and protein analyses were performed. Clamp studies revealed hepatic insulin resistance after 6 wk of ALIOS diet. Liraglutide reduced visceral adiposity and liver weight (P < 0.001). As expected, liraglutide improved glucose and insulin tolerance. Liraglutide improved hypertension (P < 0.05) and reduced cardiac hypertrophy. Surprisingly, liver from liraglutide-treated mice had significantly higher levels of fatty acid binding protein, acyl-CoA oxidase II, very long-chain acyl-CoA dehydrogenase, and microsomal triglyceride transfer protein. We conclude that liraglutide reduces the harmful effects of an ALIOS diet by improving insulin sensitivity and by reducing lipid accumulation in liver through multiple mechanisms including, transport, and increase β-oxidation.  相似文献   
12.
From nutrient uptake to chemoreception to synaptic transmission, many systems in cell biology depend on molecules diffusing and binding to membrane receptors. Mathematical analysis of such systems often neglects the fact that receptors process molecules at finite kinetic rates. A key example is the celebrated formula of Berg and Purcell for the rate that cell surface receptors capture extracellular molecules. Indeed, this influential result is only valid if receptors transport molecules through the cell wall at a rate much faster than molecules arrive at receptors. From a mathematical perspective, ignoring receptor kinetics is convenient because it makes the diffusing molecules independent. In contrast, including receptor kinetics introduces correlations between the diffusing molecules because, for example, bound receptors may be temporarily blocked from binding additional molecules. In this work, we present a modeling framework for coupling bulk diffusion to surface receptors with finite kinetic rates. The framework uses boundary homogenization to couple the diffusion equation to nonlinear ordinary differential equations on the boundary. We use this framework to derive an explicit formula for the cellular uptake rate and show that the analysis of Berg and Purcell significantly overestimates uptake in some typical biophysical scenarios. We confirm our analysis by numerical simulations of a many-particle stochastic system.  相似文献   
13.
Research has established decreased sensory habituation as a defining feature in migraine, while decreased cognitive habituation has only been found with regard to cognitive assessment of the relative probability of the occurrence of a stimulus event. Our study extended the investigation of interictal habituation in migraine to include cognitive processing when viewing of a series of visually-complex images, similar to those we encounter on the internet everyday. We examined interictal neurocognitive function in migraine from a habituation perspective, using a novel paradigm designed to assess how the response to a series of images changes over time. Two groups of participants--migraineurs (N = 25) and non-migraine controls (N = 25)--were asked to view a set of 232 unfamiliar logos in the context of a target identification task as their brain electrical responses were recorded via event-related potentials (ERPs). The set of logos was viewed serially in each of 10 separate trial blocks, with data analysis focusing on how the ERP responses to the logos in frontal electrodes from 200-600 ms changed across time within each group. For the controls, we found that the amplitude of the late positive potential (LPP) ERP component elicited by the logos had no significant change across trial blocks. In contrast, in migraineurs we found that the LPP significantly increased in amplitude across trial blocks, an effect consistent with a lack of habituation to visual stimuli seen in previous research. Our findings provide empirical support abnormal cognitive processing of complex visual images across time in migraineurs that goes beyond the sensory-level habituation found in previous research.  相似文献   
14.
15.
16.
Plasma glutathione peroxidase (GPx-3) is a selenocysteine-containing extracellular antioxidant protein that catalyzes the reduction of hydrogen peroxide and lipid hydroperoxides. Selenoprotein expression involves the alternate recognition of a UGA codon as a selenocysteine codon and requires signals in the 3′-untranslated region (UTR), including a selenocysteine insertion sequence (SECIS), as well as specific translational cofactors. To ascertain regulatory determinants of GPx-3 expression and function, we generated recombinant GPx-3 (rGPX-3) constructs with various 3′-UTR, as well as a Sec73Cys mutant. In transfected Cos7 cells, the Sec73Cys mutant was expressed at higher levels than the wild type rGPx-3, although the wild type rGPx-3 had higher specific activity, similar to plasma purified GPx-3. A 3′-UTR with only the SECIS was insufficient for wild type rGPx-3 protein expression. Selenocompound supplementation and co-transfection with SECIS binding protein 2 increased wild type rGPx-3 expression. These results demonstrate the importance of translational mechanisms in GPx-3 expression.  相似文献   
17.
Dinoflagellates are a highly diverse and environmentally important group of protists with relatively poor resolution of phylogenetic relationships, particularly among heterotrophic species. We examined the phylogeny of several dinophysiacean dinoflagellates using samples collected from four Atlantic sites. As a rule, 3.5 kb of sequence including the nuclear ribosomal genes SSU, 5.8S, LSU, plus their internal transcribed spacer (ITS) 1 and 2 regions were determined for 26 individuals, including representatives of two genera for which molecular data were previously unavailable, Ornithocercus F. Stein and Histioneis F. Stein. In addition, a clone library targeting the dinophysiacean ITS2 and LSU sequences was constructed from bulk environmental DNA from three sites. Three phylogenetic trees were inferred from the data, one using data from this study for cells identified to genus or species (3.5 kb, 28 taxa); another containing dinoflagellate SSU submissions from GenBank and the 12 new dinophysiacean sequences (1.9 kb, 56 taxa) from this study; and the third tree combing data from identified taxa, dinophysiacean GenBank submissions, and the clone libraries from this study (2.1 kb, 136 taxa). All trees were congruent and indicated a distinct division between the genera Phalacroma F. Stein and Dinophysis Ehrenb. The cyanobionts containing genera Histioneis and Ornithocercus were also monophyletic. This was the largest molecular phylogeny of dinophysoid taxa performed to date and was consistent with the view that the genus Phalacroma may not be synonymous with Dinophysis.  相似文献   
18.
RecQ helicases are believed to function in repairing replication forks stalled by DNA damage and may also play a role in the intra-S-phase checkpoint, which delays the replication of damaged DNA, thus permitting repair to occur. Since little is known regarding the effects of DNA damage on RecQ helicases, and because the replication and recombination defects in Werner syndrome cells may reflect abnormal processing of damaged DNA associated with the replication fork, we examined the effects of specific bulky, covalent adducts at N(6) of deoxyadenosine (dA) or N(2) of deoxyguanosine (dG) on Werner (WRN) syndrome helicase activity. The adducts are derived from the optically active 7,8-diol 9,10-epoxide (DE) metabolites of the carcinogen benzo[a]pyrene (BaP). The results demonstrate that WRN helicase activity is inhibited in a strand-specific manner by BaP DE-dG adducts only when on the translocating strand. These adducts either occupy the minor groove without significant perturbation of DNA structure (trans adducts) or cause base displacement at the adduct site (cis adducts). In contrast, helicase activity is only mildly affected by intercalating BaP DE-dA adducts that locally perturb DNA double helical structure. This differs from our previous observation that intercalating dA adducts derived from benzo[c]phenanthrene (BcPh) DEs inhibit WRN activity in a strand- and stereospecific manner. Partial unwinding of the DNA helix at BaP DE-dA adduct sites may make such adducted DNAs more susceptible to the action of helicase than DNA containing the corresponding BcPh DE-dA adducts, which cause little or no destabilization of duplex DNA. The single-stranded DNA binding protein RPA, an auxiliary factor for WRN helicase, enabled the DNA unwinding enzyme to overcome inhibition by either the trans-R or cis-R BaP DE-dG adduct, suggesting that WRN and RPA may function together to unwind duplex DNA harboring specific covalent adducts that otherwise block WRN helicase acting alone.  相似文献   
19.
Cellular glutathione peroxidase is a key intracellular antioxidant enzyme that contains a selenocysteine residue at its active site. Selenium, a selenocysteine incorporation sequence in the 3'-untranslated region of the glutathione peroxidase mRNA, and other translational cofactors are necessary for "read-through" of a UGA stop codon that specifies selenocysteine incorporation. Aminoglycoside antibiotics facilitate read-through of premature stop codons in prokayotes and eukaryotes. We studied the effects of G418, an aminoglycoside, on cellular glutathione peroxidase expression and function in mammalian cells. Insertion of a selenocysteine incorporation element along with a UGA codon into a reporter construct allows for read-through only in the presence of selenium. G418 increased read-through in selenium-replete cells as well as in the absence of selenium. G418 treatment increased immunodetectable endogenous or recombinant glutathione peroxidase but reduced the specific activity of the enzyme. Tandem mass spectrometry experiments indicated that G418 caused a substitution of l-arginine for selenocysteine. These data show that G418 can affect the biosynthesis of this key antioxidant enzyme by promoting substitution at the UGA codon.  相似文献   
20.
Glutathione peroxidase-1 (GPx-1) is a selenocysteine-containing enzyme that plays a major role in the reductive detoxification of peroxides in cells. In permanently transfected cells with approximate 2-fold overexpression of GPx-1, we found that intracellular accumulation of oxidants in response to exogenous hydrogen peroxide was diminished, as was epidermal growth factor receptor (EGFR)-mediated Akt activation in response to hydrogen peroxide or EGF stimulation. Knockdown of GPx-1 augmented EGFR-mediated Akt activation, whereas overexpression of catalase decreased Akt activation, suggesting that EGFR signaling is regulated by redox mechanisms. To determine whether mitochondrial oxidants played a role in these processes, cells were pretreated with a mitochondrial uncoupler prior to EGF stimulation. Inhibition of mitochondrial function attenuated EGF-mediated activation of Akt in control cells but had no additional effect in GPx-1-overexpressing cells, suggesting that GPx-1 overexpression decreased EGFR signaling by decreasing mitochondrial oxidants. Consistent with this finding, GPx-1 overexpression decreased global protein disulfide bond formation, which is dependent on mitochondrially produced oxidants. GPx-1 overexpression, in permanently transfected or adenovirus-treated cells, also caused overall mitochondrial dysfunction with a decrease in mitochondrial potential and a decrease in ATP production. GPx-1 overexpression also decreased EGF- and serum-mediated [3H]thymidine incorporation, indicating that alterations in GPx-1 can attenuate cell proliferation. Taken together, these data suggest that GPx-1 can modulate redox-dependent cellular responses by regulating mitochondrial function.Accumulation of reactive oxygen species (ROS),2 such as superoxide anion and hydrogen peroxide, is thought to contribute to cellular damage, apoptosis, and cell death (13); however, ROS production is part of normal cellular metabolism, and evidence is accumulating that hydrogen peroxide, in particular, may function as a signaling molecule necessary for cell growth and survival (48). Superoxide is generated as a byproduct of mitochondrial respiration and by cellular redox enzymes, such as NADPH oxidase, that are stimulated through receptor-mediated mechanisms (9). Hydrogen peroxide is formed from the dismutation of superoxide, which occurs spontaneously or can be catalyzed by superoxide dismutase (10) or, alternatively, is produced by the two-electron enzymatic reduction of molecular oxygen by various oxidases, such as xanthine oxidase (11). Recent studies also suggest that hydrogen peroxide may be directly generated by receptor-ligand interactions (12). One mechanism by which hydrogen peroxide may modulate signal transduction is through the reversible oxidation of proteins at redox-active cysteines, including, for example, thiols in tyrosine kinase phosphatases. Oxidation and inactivation of phosphatases, such as PTEN, have been shown to promote the activity of the pro-growth and -survival kinase, Akt (13).Antioxidant enzymes, such as glutathione peroxidase, catalase, and peroxiredoxins, serve to eliminate hydrogen peroxide, thereby regulating cellular responses to this endogenous oxidant. GPx-1 is a selenoprotein and one of a family of peroxidases that reductively inactivate peroxides using glutathione as a source of reducing equivalents (14, 15). GPx-1, in particular, is a major intracellular antioxidant enzyme that is found in the cytoplasm and mitochondria of all cell types. In cell culture models as well as in genetic mouse models, GPx-1 overexpression is associated with enhanced protection against oxidative stress (1619); however, GPx-1-overexpressing mice can become obese and insulin-resistant, and have attenuated insulin-mediated activation of Akt (20). Thus, to study how GPx-1 modulates the effects of cellular oxidants on cell signaling and cell growth, we analyzed cellular responses to hydrogen peroxide and EGF in permanently transfected cells overexpressing GPx-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号