全文获取类型
收费全文 | 230篇 |
免费 | 21篇 |
专业分类
251篇 |
出版年
2022年 | 1篇 |
2021年 | 6篇 |
2020年 | 6篇 |
2019年 | 7篇 |
2018年 | 3篇 |
2017年 | 8篇 |
2016年 | 6篇 |
2015年 | 9篇 |
2014年 | 26篇 |
2013年 | 16篇 |
2012年 | 21篇 |
2011年 | 29篇 |
2010年 | 8篇 |
2009年 | 9篇 |
2008年 | 12篇 |
2007年 | 13篇 |
2006年 | 16篇 |
2005年 | 9篇 |
2004年 | 11篇 |
2003年 | 10篇 |
2002年 | 3篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1999年 | 6篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1984年 | 1篇 |
1977年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有251条查询结果,搜索用时 0 毫秒
21.
22.
Merav Gleit Kielmanowicz Alex Inberg Inbar Maayan Lerner Yael Golani Nicholas Brown Catherine Louise Turner Gerald J. R. Hayes Joan M. Ballam 《PLoS pathogens》2015,11(4)
Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health. 相似文献
23.
Drosophila proprioceptors (chordotonal organs) are structured as a linear array of four lineage-related cells: a neuron, a glial cell, and two accessory cells, called cap and ligament, between which the neuron is stretched. To function properly as stretch receptors, chordotonal organs must be stably anchored at both edges. The cap cells are anchored to the cuticle through specialized lineage-related attachment cells. However, the mechanism by which the ligament cells at the other edge of the organ attach is not known. Here, we report the identification of specialized attachment cells that anchor the ligament cells of pentascolopidial chordotonal organs (lch5) to the cuticle. The ligament attachment cells are recruited by the approaching ligament cells upon reaching their attachment site, through an EGFR-dependent mechanism. Molecular characterization of lch5 attachment cells demonstrated that they share significant properties with Drosophila tendon cells and with mammalian proprioceptive organs. 相似文献
24.
Sugars enhance the expression of gibberellin-induced genes in developing petunia flowers 总被引:12,自引:0,他引:12
Sugar is essential for the development of detached Petunia hybrida flowers. We have shown that sucrose (Suc) and gibberellic acid (GA3 ) are required for anthocyanin accumulation and the expression of various genes in developing petunia corollas. The effect of GA3 on the expression of the gibberellin-induced gene and chalcone synthase gene, in detached corollas, was promoted by metabolic sugars such as Suc, glucose (Glc) and fructose, but not by the nonmetabolized 3- O -methylglucose and the sugar alcohol, mannitol. Several pieces of evidence support sugars' signaling role in the corollas and the possible involvement of hexokinase as the sugar sensor. Mannose, which is inefficiently metabolized but is phosphorylated by hexokinase at efficiency similar to Glc, was as effective as Glc in promoting gene expression and pigmentation. 2-Deoxyglucose, which is a substrate for hexokinase but is not metabolized in glycolysis, also promoted gene expression. On the other hand, mannoheptulose, a competitive inhibitor of hexokinase, completely abolished the promotive effect of Glc. We suggest that sugar-phosphorylation-related signal transduction interacts with the gibberellin signal to induce gene expression and anthocyanin accumulation in developing petunia corollas. 相似文献
25.
Carlin D Sepich D Grover VK Cooper MK Solnica-Krezel L Inbal A 《Development (Cambridge, England)》2012,139(14):2614-2624
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway. 相似文献
26.
Avraham-Davidi I Ely Y Pham VN Castranova D Grunspan M Malkinson G Gibbs-Bar L Mayseless O Allmog G Lo B Warren CM Chen TT Ungos J Kidd K Shaw K Rogachev I Wan W Murphy PM Farber SA Carmel L Shelness GS Iruela-Arispe ML Weinstein BM Yaniv K 《Nature medicine》2012,18(6):967-973
Despite the clear major contribution of hyperlipidemia to the prevalence of cardiovascular disease in the developed world, the direct effects of lipoproteins on endothelial cells have remained obscure and are under debate. Here we report a previously uncharacterized mechanism of vessel growth modulation by lipoprotein availability. Using a genetic screen for vascular defects in zebrafish, we initially identified a mutation, stalactite (stl), in the gene encoding microsomal triglyceride transfer protein (mtp), which is involved in the biosynthesis of apolipoprotein B (ApoB)-containing lipoproteins. By manipulating lipoprotein concentrations in zebrafish, we found that ApoB negatively regulates angiogenesis and that it is the ApoB protein particle, rather than lipid moieties within ApoB-containing lipoproteins, that is primarily responsible for this effect. Mechanistically, we identified downregulation of vascular endothelial growth factor receptor 1 (VEGFR1), which acts as a decoy receptor for VEGF, as a key mediator of the endothelial response to lipoproteins, and we observed VEGFR1 downregulation in hyperlipidemic mice. These findings may open new avenues for the treatment of lipoprotein-related vascular disorders. 相似文献
27.
B P Chadwick J Mull L A Helbling S Gill M Leyne C M Robbins H W Pinkett I Makalowska C Maayan A Blumenfeld F B Axelrod M Brownstein J F Gusella S A Slaugenhaupt 《Genomics》1999,58(3):302-309
Two novel human actin-like genes, ACTL7A and ACTL7B, were identified by cDNA selection and direct genomic sequencing from the familial dysautonomia candidate region on 9q31. ACTL7A encodes a 435-amino-acid protein (predicted molecular mass 48.6 kDa) and ACTL7B encodes a 415-amino-acid protein (predicted molecular mass 45. 2 kDa) that show greater than 65% amino acid identity to each other. Genomic analysis revealed ACTL7A and ACTL7B to be intronless genes contained on a common 8-kb HindIII fragment in a "head-to-head" orientation. The murine homologues were cloned and mapped by linkage analysis to mouse chromosome 4 in a region of gene order conserved with human chromosome 9q31. No recombinants were observed between the two genes, indicating a close physical proximity in mouse. ACTL7A is expressed in a wide variety of adult tissues, while the ACTL7B message was detected only in the testis and, to a lesser extent, in the prostate. No coding sequence mutations, genomic rearrangements, or differences in expression were detected for either gene in familial dysautonomia patients. 相似文献
28.
Deletion of the neuron-specific protein delta-catenin leads to severe cognitive and synaptic dysfunction 总被引:6,自引:0,他引:6
Delta-catenin (delta-catenin) is a neuron-specific catenin, which has been implicated in adhesion and dendritic branching. Moreover, deletions of delta-catenin correlate with the severity of mental retardation in Cri-du-Chat syndrome (CDCS), which may account for 1% of all mentally retarded individuals. Interestingly, delta-catenin was first identified through its interaction with Presenilin-1 (PS1), the molecule most frequently mutated in familial Alzheimer's Disease (FAD). We investigated whether deletion of delta-catenin would be sufficient to cause cognitive dysfunction by generating mice with a targeted mutation of the delta-catenin gene (delta-cat(-/-)). We observed that delta-cat(-/-) animals are viable and have severe impairments in cognitive function. Furthermore, mutant mice display a range of abnormalities in hippocampal short-term and long-term synaptic plasticity. Also, N-cadherin and PSD-95, two proteins that interact with delta-catenin, are significantly reduced in mutant mice. These deficits are severe but specific because delta-cat(-/-) mice display a variety of normal behaviors, exhibit normal baseline synaptic transmission, and have normal levels of the synaptic adherens proteins E-cadherin and beta-catenin. These data reveal a critical role for delta-catenin in brain function and may have important implications for understanding mental retardation syndromes such as Cri-du-Chat and neurodegenerative disorders, such as Alzheimer's disease, that are characterized by cognitive decline. 相似文献
29.
Hecht I Skoge ML Charest PG Ben-Jacob E Firtel RA Loomis WF Levine H Rappel WJ 《PLoS computational biology》2011,7(6):e1002044
Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches. 相似文献
30.
Delta-catenin belongs to the p120-catenin (p120(ctn)) protein family, which is characterized by ten, characteristically spaced Armadillo repeats that bind to the juxtamembrane segment of the classical cadherins. Delta-catenin is the only member of this family that is expressed specifically in neurons, where it binds to PDZ domain proteins in the post-synaptic compartment. As a component of both adherens and synaptic junctions, delta-catenin can link the adherens junction to the synapse and, thereby, coordinate synaptic input with changes in the adherens junction. By virtue of its restriction to the post-synaptic area, delta-catenin creates an asymmetric adherens junction in the region of the synapse. The crucial nature of the specialized function of delta-catenin in neurons is demonstrated by a targeted gene mutation, which causes deficits in learning and in synaptic plasticity. Taken together, recent evidence indicates that delta-catenin is a sensor of synaptic activity and implements activity-related morphological changes at the synapse. 相似文献