全文获取类型
收费全文 | 148篇 |
免费 | 17篇 |
专业分类
165篇 |
出版年
2022年 | 1篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 2篇 |
2017年 | 4篇 |
2016年 | 3篇 |
2015年 | 5篇 |
2014年 | 14篇 |
2013年 | 10篇 |
2012年 | 14篇 |
2011年 | 20篇 |
2010年 | 3篇 |
2009年 | 7篇 |
2008年 | 8篇 |
2007年 | 8篇 |
2006年 | 14篇 |
2005年 | 9篇 |
2004年 | 9篇 |
2003年 | 8篇 |
2002年 | 3篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有165条查询结果,搜索用时 15 毫秒
31.
Abigael Eva Chaouat Hagit Achdout Inbal Kol Orit Berhani Gil Roi Einat B. Vitner Sharon Melamed Boaz Politi Eran Zahavy Ilija Brizic Tihana Lenac Rovis Or Alfi Dana Wolf Stipan Jonjic Tomer Israely Ofer Mandelboim 《PLoS pathogens》2021,17(12)
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients. 相似文献
32.
Mor I Bruck T Greenberg D Berson A Schreiber L Grisaru D Soreq H 《Chemico-biological interactions》2008,175(1-3):11-21
Tumorogenic transformation is a multifaceted cellular process involving combinatorial protein-protein interactions that modulate different cellular functions. Here, we report apparent involvement in two independent tumorogenic processes by distinct partner protein interactions of the stress-induced acetylcholinesterase AChE-R and N-AChE-R variants. Human testicular tumors showed elevated levels of N-terminally extended N-AChE-R compared with healthy tissue, indicating alternate promoter usage in the transformed cells. Two-hybrid screens demonstrate that the C-terminus common to both N-AChE-R and AChE-R interacts either with the glycolytic enzyme enolase or with the scaffold protein RACK1. In vitro, the AChE-R C-terminal peptide ARP elevated enolase's activity by 12%, suggesting physiological relevance for this interaction. Correspondingly, CHO cells expressing either human AChE-R or N-AChE-R but not AChE-S showed a 25% increase in cellular ATP levels, indicating metabolic significance for this upregulation of enolase activity. ATP levels could be reduced by AChE-targeted siRNA in CHO cells expressing AChE-R but not AChE-S, attributing this elevation to the AChE-R C-terminus. Additionally, transfected CHO cells expressing AChE-R but not N-AChE-R showed resistance to up to 60muM of the common chemotherapeutic agent, cis-platinum, indicating AChE-R involvement in another molecular pathway. cis-Platinum elevates the expression of the apoptosis-regulator p53-like protein, p73, which is inactivated by interaction with the scaffold protein RACK1. In co-transfected cells, AChE-R competed with endogenous RACK1 for p73 interaction. Moreover, AChE-R-transfected CHO cells presented higher levels than control cells of the pro-apoptotic TAp73 as well as the anti-apoptotic dominant negative DeltaNp73 protein, leading to an overall decrease in the proportion of pro-apoptotic p73. Together, these findings are compatible with the hypothesis that in cancer cells, both AChE-R and N-AChE-R elevate cellular ATP levels and that AChE-R modifies p73 gene expression by facilitating two independent cellular pathways, thus conferring both a selective metabolic advantage and a genotoxic resistance. 相似文献
33.
34.
35.
The effect of multiplication of the N-terminal domain of vasoactive intestinal peptide (VIP) on the binding activity of the peptide was recently evaluated. A VIP analog with multiple N-terminal domains was found to be slightly more potent as compared to [Nle(17)]VIP towards VIP receptor type 1 (VPAC1)-related cAMP production. Here, the effect of multiplication of the C-terminal domain of VIP was evaluated with the aim of possibly amplifying peptide-receptor (VPAC1) binding and activation. Several VIP analogs were designed and synthesized, each carrying multiplication of the C-terminal domain that was obtained by either a simple linear tandem extension or by a unique branching methodology. Results show that despite significant alterations in the C-terminal domain of VIP that is considered essential to induce potent receptor binding, few peptides demonstrated only slight reduction in receptor binding and activation in comparison to [Nle(17)]VIP. Furthermore, a specific branched VIP analog with multiple C-terminal domains was equipotent to [Nle(17)]VIP in the cAMP production assay. Therefore, it is concluded that the association between the VIP ligand to the VIP receptor could be tolerable to size increases in the C-terminal region of the VIP ligand and multiplication of the C-terminal does not increase activity. 相似文献
36.
Nuclear ataxia-telangiectasia mutated (ATM) mediates the cellular response to DNA double strand breaks in human neuron-like cells 总被引:1,自引:0,他引:1
Biton S Dar I Mittelman L Pereg Y Barzilai A Shiloh Y 《The Journal of biological chemistry》2006,281(25):17482-17491
The protein kinase ATM (ataxia-telangiectasia mutated) activates the cellular response to double strand breaks (DSBs), a highly cytotoxic DNA lesion. ATM is activated by DSBs and in turn phosphorylates key players in numerous damage response pathways. ATM is missing or inactivated in the autosomal recessive disorder ataxia-telangiectasia (A-T), which is characterized by neuronal degeneration, immunodeficiency, genomic instability, radiation sensitivity, and cancer predisposition. The predominant symptom of A-T is a progressive loss of movement coordination due to ongoing degeneration of the cerebellar cortex and peripheral neuropathy. A major deficiency in understanding A-T is the lack of information on the role of ATM in neurons. It is unclear whether the ATM-mediated DSB response operates in these cells similarly to proliferating cells. Furthermore, ATM was reported to be cytoplasmic in neurons and suggested to function in these cells in capacities other than the DNA damage response. Recently we obtained genetic molecular evidence that the neuronal degeneration in A-T does result from defective DNA damage response. We therefore undertook to investigate this response in a model system of human neuron-like cells (NLCs) obtained by neuronal differentiation in culture. ATM was largely nuclear in NLCs, and their ATM-mediated responses to DSBs were similar to those of proliferating cells. Knocking down ATM did not interfere with neuronal differentiation but abolished ATM-mediated damage responses in NLCs. We concluded that nuclear ATM mediates the DSB response in NLCs similarly to in proliferating cells. Attempts to understand the neurodegeneration in A-T should be directed to investigating the DSB response in the nervous system. 相似文献
37.
Gal Wittenberg Alexander Levitan Tamir Klein Inbal Dangoor Nir Keren Avihai Danon 《The Plant journal : for cell and molecular biology》2014,78(6):1003-1013
A chloroplast protein disulfide isomerase (PDI) was previously proposed to regulate translation of the unicellular green alga Chlamydomonas reinhardtii chloroplast psbA mRNA, encoding the D1 protein, in response to light. Here we show that AtPDI6, one of 13 Arabidopsis thaliana PDI genes, also plays a role in the chloroplast. We found that AtPDI6 is targeted and localized to the chloroplast. Interestingly, AtPDI6 knockdown plants displayed higher resistance to photoinhibition than wild‐type plants when exposed to a tenfold increase in light intensity. The AtPDI6 knockdown plants also displayed a higher rate of D1 synthesis under a similar light intensity. The increased resistance to photoinhibition may not be rationalized by changes in antenna or non‐photochemical quenching. Thus, the increased D1 synthesis rate, which may result in a larger proportion of active D1 under light stress, may led to the decrease in photoinhibition. These results suggest that, although the D1 synthesis rates observed in wild‐type plants under high light intensities are elevated, repair can potentially occur faster. The findings implicate AtPDI6 as an attenuator of D1 synthesis, modulating photoinhibition in a light‐regulated manner. 相似文献
38.
Ravid Doron Dafna Lotan Nili Einat Roni Yaffe Avigail Winer Inbal Marom Gili Meron Nadav Kately Moshe Rehavi 《Life sciences》2014
Aims
Depression is a chronic, recurring and potentially life-threatening illness. Current treatments for depression are characterized by a low success rate and associated with a wide variety of side effects. The aim of the present study was to evaluate the behavioral and biological anti-depressant effects of a novel herbal treatment (NHT), as well as to assess its potential side effects, in comparison to treatment with the selective serotonin reuptake inhibitor escitalopram.Main methods
Depressive-like behavior was evaluated using the forced swim test (FST) and the tail suspension test (TST). Sexual behavior was evaluated following treatment by measuring latency before first mount and number of total mounts. Brain derived neurotrophic factor (BDNF) levels were evaluated using enzyme-linked immunosorbent assay. Serotonin transporter (SERT) levels in the pre-frontal cortex (PFC) and hypothalamus were evaluated using high affinity binding assay.Key findings
(1) The NHT reduced depressive-like behavior in the FST and TST; (2) BDNF levels in the PFC of mice treated both with the NHT and escitalopram were increased; (3) SERT levels in the hypothalamus were significantly higher in the NHT group, in comparison to escitalopram and the control groups, and significantly lower in the PFC of the NHT group in comparison to the escitalopram group; and (4) the NHT led to less sexual dysfunction, compared to treatment with escitalopram.Significance
Our NHT has the potential of being highly efficacious in treating depression in humans, while causing minimal to no influence on sexual function. 相似文献39.
40.
Geng X Speirs C Lagutin O Inbal A Liu W Solnica-Krezel L Jeong Y Epstein DJ Oliver G 《Developmental cell》2008,15(2):236-247
Holoprosencephaly (HPE), the most common forebrain malformation, is characterized by an incomplete separation of the cerebral hemispheres. Mutations in the homeobox gene SIX3 account for 1.3% of all cases of human HPE. Using zebrafish-based assays, we have now determined that HPE-associated Six3 mutant proteins function as hypomorphs. Haploinsufficiency of Six3 caused by deletion of one allele of Six3 or by replacement of wild-type Six3 with HPE-associated Six3 mutant alleles was sufficient to recapitulate in mouse models most of the phenotypic features of human HPE. We demonstrate that Shh is a direct target of Six3 in the rostral diencephalon ventral midline (RDVM). Reduced amounts of functional Six3 protein fail to activate Shh expression in the mutant RDVM and ultimately lead to HPE. These results identify Six3 as a direct regulator of Shh expression and reveal a crossregulatory loop between Shh and Six3 in the ventral forebrain. 相似文献