首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   13篇
  国内免费   1篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   10篇
  2017年   10篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   11篇
  2012年   26篇
  2011年   12篇
  2010年   13篇
  2009年   5篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   12篇
  2001年   6篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有225条查询结果,搜索用时 281 毫秒
141.
The broad repertoire of secreted trophic and immunomodulatory cytokines produced by mesenchymal stem cells (MSCs), generally referred to as the MSC secretome, has considerable potential for the treatment of cardiovascular disease. However, harnessing this MSC secretome for meaningful therapeutic outcomes is challenging due to the limited control of cytokine production following their transplantation. This review outlines the current understanding of the MSC secretome as a therapeutic for treatment of ischemic heart disease. We discuss ongoing investigative directions aimed at improving cellular activity and characterizing the secretome and its regulation in greater detail. Finally, we provide insights on and perspectives for future development of the MSC secretome as a therapeutic tool.  相似文献   
142.
Escherichia coli is frequently used as a microbial host to express recombinant proteins but it lacks the ability to secrete proteins into medium. One option for protein release is to use high‐pressure homogenization followed by a centrifugation step to remove cell debris. While this does not give selective release of proteins in the periplasmic space, it does provide a robust process. An ultra scale‐down (USD) approach based on focused acoustics is described to study rec E. coli cell disruption by high‐pressure homogenization for recovery of an antibody fragment (Fab′) and the impact of fermentation harvest time. This approach is followed by microwell‐based USD centrifugation to study the removal of the resultant cell debris. Successful verification of this USD approach is achieved using pilot scale high‐pressure homogenization and pilot scale, continuous flow, disc stack centrifugation comparing performance parameters such as the fraction of Fab′ release, cell debris size distribution and the carryover of cell debris fine particles in the supernatant. The integration of fermentation and primary recovery stages is examined using USD monitoring of different phases of cell growth. Increasing susceptibility of the cells to disruption is observed with time following induction. For a given recovery process this results in a higher fraction of product release and a greater proportion of fine cell debris particles that are difficult to remove by centrifugation. Such observations are confirmed at pilot scale. Biotechnol. Bioeng. 2013 9999:XX–XX. © 2013 Wiley Periodicals, Inc. Biotechnol. Bioeng. 2013; 110: 2150–2160. © 2013 Wiley Periodicals, Inc.  相似文献   
143.
Staphylococcus aureus (S. aureus)-induced mastitis is the most frequent, pathogenic, and prevalent infection of the mammary gland. The ligand growth arrest-specific 6 (Gas6) is a secretory protein that binds to and activates Tyro3, Axl, and MerTK receptors. This study explored the role of Gas6 in S. aureus-induced mastitis. Our results revealed that TLR receptors initiate the innate immune response in mammary gland tissues and epithelial cells and that introducing S. aureus activates TLR2 and TLR6 to drive multiple intracellular mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) pathways. Moreover, S. aureus also induces Gas6, which then activates the TAM receptor kinase pathway, which is related to the inhibition of TLR2- and TLR6-mediated inflammatory pathways through SOCS1 and SOCS3 induction. Gas6 absence alone was found to be involved in the downregulation of TAM receptor-mediated anti-inflammatory effects by inducing significantly prominent expression of TRAF6 and low protein and messenger RNA expression of SOCS1 and SOCS3. S. aureus-induced MAPK and NF-ĸB p65 phosphorylation were also dependent on Gas6, which negatively regulated the production of Pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in S. aureus-treated mammary tissues and mammary epithelial cells. Our in vivo and in vitro study uncovered the Gas6-mediated negative feedback mechanism, which inhibits TLR2- and TLR6-mediated MAPK and NF-ĸB signaling by activating TAM receptor kinase (MerTK, Axl, and Tyro3) through the induction of SOCS1/SOCS3 proteins.  相似文献   
144.

Background

In the drug discovery pipeline, safety pharmacology is a major issue. The zebrafish has been proposed as a model that can bridge the gap in this field between cell assays (which are cost-effective, but low in data content) and rodent assays (which are high in data content, but less cost-efficient). However, zebrafish assays are only likely to be useful if they can be shown to have high predictive power. We examined this issue by assaying 60 water-soluble compounds representing a range of chemical classes and toxicological mechanisms.

Methodology/Principal Findings

Over 20,000 wild-type zebrafish embryos (including controls) were cultured individually in defined buffer in 96-well plates. Embryos were exposed for a 96 hour period starting at 24 hours post fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC50 determination. Zebrafish embryo LC50 (log mmol/L), and published data on rodent LD50 (log mmol/kg), were found to be strongly correlated (using Kendall''s rank correlation tau and Pearson''s product-moment correlation). The slope of the regression line for the full set of compounds was 0.73403. However, we found that the slope was strongly influenced by compound class. Thus, while most compounds had a similar toxicity level in both species, some compounds were markedly more toxic in zebrafish than in rodents, or vice versa.

Conclusions

For the substances examined here, in aggregate, the zebrafish embryo model has good predictivity for toxicity in rodents. However, the correlation between zebrafish and rodent toxicity varies considerably between individual compounds and compound class. We discuss the strengths and limitations of the zebrafish model in light of these findings.  相似文献   
145.
Staphylococcus aureus and Pseudomonas aeruginosa are rapidly increasing as multidrug resistant strains worldwide. In nosocomial settings because of heavy exposure of different antimicrobials, resistance in these pathogens turned into a grave issue in both developed and developing countries. The aim of this study was to investigate in vitro antibiotic synergism of combinations of β-lactam–β-lactam and β-lactam–aminoglycoside against clinical isolates of S. aureus and P. aeruginosa. Synergy was determined by checkerboard double dilution method. The combination of amoxicillin and cefadroxil was found to be synergistic against 47 S. aureus isolates, in the FICI range of 0.14–0.50 (81.03%) followed by the combination of streptomycin and cefadroxil synergistic against 44 S. aureus isolates in the FICI range of 0.03–0.50 (75.86%). The combination of streptomycin and cefadroxil was observed to be synergistic against 39 P. aeruginosa isolates in the FICI range of 0.16–0.50 (81.28%). Further actions are needed to characterize the possible interaction mechanism between these antibiotics. Moreover, the combination of streptomycin and cefadroxil may lead to the development of a new and vital antimicrobial against simultaneous infections of S. aureus and P. aeruginosa.  相似文献   
146.
Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales.  相似文献   
147.
Various circulating biochemical markers are indicators of pathological state in leukemia and its subtypes. Increased oxidative stress and decreased antioxidant factors portray clear image associated with malignancies during subtypes of leukemia. In this research work we investigated the inter-relationship among the subtypes of leukemia with circulating biochemical markers and oxidative stress in the Pakistani population. This research work was conducted on a total number of 70 subjects in which 20 were control participants and 50 were suffering from leukemia and divided into two subtypes (ALL and AML). Various circulating biomarkers were investigated including hematological, hepatic and renal profiles as well as oxidative stress markers, electrolytes and vitamins C and E. Results show that vitamin E was found to be decreased in diseased sub-types (P < 0.05). Malondialdehyde (MDA) levels were very high in disease sub-types (ALL-B = 8.69 ± 1.59; ALL-T = 8.78 ± 0.97; AML = 8.50 ± 1.29) compared to controls (1.22 ± 0.10; P < 0.05) while the levels of antioxidants [superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), catalase (CAT)], platelets, as well as electrolytes (Ca and Mg) were reduced in patients suffering from leukemia (sub-types). Enhanced levels of oxidative stress (MDA) and decreased levels of enzymatic and non-enzymatic antioxidants reflect the pathological state and impaired cell control in patients suffering from leukemia (subtypes) and show a strong correlation with oxidative stress, indicating that patients’ biological systems are under oxidative stress.  相似文献   
148.
Microtubules are nano-machines that grow and shrink stochastically, making use of the coupling between chemical kinetics and mechanics of its constituent protofilaments (PFs). We investigate the stability and shrinkage of microtubules taking into account inter-protofilament interactions and bending interactions of intrinsically curved PFs. Computing the free energy as a function of PF tip position, we show that the competition between curvature energy, inter-PF interaction energy and entropy leads to a rich landscape with a series of minima that repeat over a length-scale determined by the intrinsic curvature. Computing Langevin dynamics of the tip through the landscape and accounting for depolymerization, we calculate the average unzippering and shrinkage velocities of GDP protofilaments and compare them with the experimentally known results. Our analysis predicts that the strength of the inter-PF interaction (Ems) has to be comparable to the strength of the curvature energy (Emb) such that EmsEmb1kBT, and questions the prevalent notion that unzippering results from the domination of bending energy of curved GDP PFs. Our work demonstrates how the shape of the free energy landscape is crucial in explaining the mechanism of MT shrinkage where the unzippered PFs will fluctuate in a set of partially peeled off states and subunit dissociation will reduce the length.  相似文献   
149.
The inhibitory activity of five plant extracts viz. Artemisia absinthium L., Rumex obtusifolius L., Taraxacum officinale Weber ex Wiggers, Plantago lanceolata L. and Malva sylvestris L. were evaluated against the mycelial growth of three fungi Alternaria alternata (Fr.) Keissler, Penicillium expansum Link ex Thom. and Mucor piriformis Fisher that cause rot diseases in fruits and vegetables resulting in low yield and quality of fruits and vegetables. Results revealed that all the concentrations of plant extracts brought about significant inhibition in the mycelial growth of these pathogenic fungi. However, the highest concentration caused maximum inhibition in the mycelial growth followed by lower concentrations of plant extracts. The extract of A. absinthium leaves at highest concentration (S) proved highly effective in inhibiting the mycelial growth of all these pathogenic fungi followed by other plant extracts. These plants thus may have potential as the new natural fungicide for management of fungal rot diseases.  相似文献   
150.
Sienkiewicz  Nathan  Bier  Raven L.  Wang  Jing  Zgleszewski  Laura  Lutgen  Alyssa  Jiang  Grant  Mattern  Katie  Inamdar  Shreeram  Kan  Jinjun 《Biogeochemistry》2020,148(3):271-290

Streambank legacy sediments may be important sources of sediment and nutrients from Mid-Atlantic watersheds. However, little is known about the nutrient processing roles of microorganisms that inhabit legacy sediments, let alone their composition, diversity, and distributions. In this study, we sampled 15 streambanks at multiple depths throughout four watersheds in the Mid-Atlantic Region of the USA. High throughput sequencing of 16S ribosomal RNA genes indicated that streambank microbial community composition varied within site depth and across contemporary land uses. Collectively, the most abundant microbial taxa in legacy sediments included Acidobacteria (25–45%), Proteobacteria (15–40%), Nitrospirae (2–10%), Chloroflexi (1–5%), and Actinobacteria (1–10%). Bacterial community composition was distinct between agriculture and urban sites as well as suburban and urban sites. There was significant variation in community composition between the top (1–25%), upper-middle (26–50%), and bottom layers (76–100%) of sediments, while the relative abundances differed between layers for only Acidobacteria and Proteobacteria. Several streambank chemistry variables (metals, %TC, and %TN) had weak positive correlations with community composition. Compared to ammonia-oxidizing bacteria, nitrifying archaea were more predominant. This study provides the first insights into detailed microbial composition of legacy sediments and identifies environmental drivers for community structure and nitrogen processing. Future studies should consider exploring the role of this unique microbial environment for nutrient processing and leaching from legacy sediments and its implications for watershed water quality.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号