首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1014篇
  免费   49篇
  2022年   7篇
  2021年   16篇
  2020年   9篇
  2019年   14篇
  2018年   28篇
  2017年   19篇
  2016年   23篇
  2015年   27篇
  2014年   44篇
  2013年   53篇
  2012年   70篇
  2011年   57篇
  2010年   46篇
  2009年   41篇
  2008年   67篇
  2007年   47篇
  2006年   56篇
  2005年   49篇
  2004年   45篇
  2003年   28篇
  2002年   36篇
  2001年   15篇
  2000年   16篇
  1999年   14篇
  1998年   14篇
  1997年   7篇
  1996年   10篇
  1995年   6篇
  1992年   13篇
  1991年   8篇
  1990年   12篇
  1989年   9篇
  1988年   8篇
  1987年   15篇
  1986年   14篇
  1985年   11篇
  1984年   9篇
  1983年   8篇
  1982年   6篇
  1980年   9篇
  1979年   7篇
  1978年   8篇
  1977年   4篇
  1976年   4篇
  1975年   9篇
  1974年   5篇
  1973年   8篇
  1972年   8篇
  1971年   8篇
  1970年   4篇
排序方式: 共有1063条查询结果,搜索用时 218 毫秒
91.
92.
8-oxoguanosine, which is derived from the oxidation of guanosine (dG), is known to induce transversion mutations (G:C-->T:A) in DNA. The compounds with a small molecular weight for recognizing 8-oxoG were designed on the basis of the structure of the G-clamp, which is reported to have selective affinity toward guanosine. The G-clamp derivatives with the additional binding units toward 8-oxoG were effectively synthesized and named "8-oxoG-clamps." The 8-oxoG-clamp completely discriminated 8-oxoG from other nucleosides by fluorescence quenching.  相似文献   
93.
94.
PLC/PRF/5 cells show limited permissiveness, meaning that almost all subclones are permissive; however, some subclones do not exhibit permissiveness for hepatitis E virus (HEV) infection. In this study, the single‐cell cloning of PLC/PRF/5 was performed and heterogeneous subclones characterized. Notably, the efficiency of intracellular virus replication did not correlate with the permissiveness for HEV infection. However, as well as binding permissive subclones, virus‐like particles bound non‐permissive subclones on various levels, suggesting that these subclones have some deficiencies in the attachment and entry steps of infection. Our data would be useful for investigating the HEV life cycle.  相似文献   
95.
96.
The tRNA splicing endonuclease (Sen) complex is located on the mitochondrial outer membrane and splices precursor tRNAs in Saccharomyces cerevisiae. Here, we demonstrate that the Sen complex cleaves the mitochondria-localized mRNA encoding Cbp1 (cytochrome b mRNA processing 1). Endonucleolytic cleavage of this mRNA required two cis-elements: the mitochondrial targeting signal and the stem-loop 652–726-nt region. Mitochondrial localization of the Sen complex was required for cleavage of the CBP1 mRNA, and the Sen complex cleaved this mRNA directly in vitro. We propose that the Sen complex cleaves the CBP1 mRNA, which is co-translationally localized to mitochondria via its mitochondrial targeting signal.  相似文献   
97.
Osteoporosis is a serious disease caused by decreased bone mass. There is constant matrix remodeling in bones, by which bone formation is performed by osteoblastic cells, whereas bone resorption is accomplished by osteoclast cells. We investigated the effect of a Japanese apricot (Prunus mume SIBE. et ZUCC.) extract on the proliferation and osteoblastic differentiation in pre-osteoblastic MC3T3-E1 cells. An alkaline phosphatase (ALP) activity assay, cell proliferation assay, alizarin red staining and expression analysis of osteoblastic genes were carried out to assess the proliferation and osteoblastic differentiation. The water-soluble fraction of Prunus mume (PWF) increased the ALP activity, cell proliferation and mineralization. The gene expression of osteopontin and bone morphogenetic protein-2, which are markers in the early period of osteoblastic differentiation, were significantly enhanced by the PWF treatment. PWF therefore stimulated the proliferation and osteoblastic differentiation of cells and may have potential to prevent osteoporosis.  相似文献   
98.
Knowledge of the basic reproductive physiology of snow leopards is required urgently in order to develop a suitable management conditions under captivity. In this study, the long-term monitoring of concentrations of three steroid hormones in fecal matter of three female snow leopards was performed using enzyme immunoassays: (1) estradiol-17β, (2) progesterone and (3) cortisol metabolite. Two of the female animals were housed with a male during the winter breeding season, and copulated around the day the estradiol-17β metabolite peaked subsequently becoming pregnant. The other female was treated in two different ways: (1) first housed with a male in all year round and then (2) in the winter season only. She did not mate with him on the first occasion, but did so latter around when estradiol-17β metabolite peaked, and became pseudopregnant. During pregnancy, progesterone metabolite concentrations increased for 92 or 94 days, with this period being approximately twice as long as in the pseudopregnant case (31, 42, 49 and 53 days). The levels of cortisol metabolite in the pseudopregnant female (1.35 μg/g) were significantly higher than in the pregnant females (0.33 and 0.24 μg/g) (P<0.05). Similarly, during the breeding season, the levels of estradiol-17β metabolite in the pseudopregnant female (2.18 μg/g) were significantly higher than those in the pregnant females (0.81 and 0.85 μg/g) (P<0.05). Unlike cortisol the average levels of estradiol-17β during the breeding season were independent of reproductive success.The hormone levels may also be related to housing conditions and the resulting reproductive success in female leopards. The female housed with a male during the non-breeding season had high levels of cortisol metabolites and low levels of estradiol-17β in the breeding season, and failed to become pregnant. This indicates that housing conditions in snow leopards may be an important factor for normal endocrine secretion and resulting breeding success.  相似文献   
99.
Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously expressed a highly metastatic potential, mitochondrial respiration defects, and ROS overproduction. Since mitochondrial respiratory function is controlled by both mtDNA and nuclear DNA, it is possible that nuclear DNA mutations contribute to the mitochondrial respiration defects and the highly metastatic potential found in MDA-MB-231 cells. To examine this possibility, we carried out mtDNA replacement of MDA-MB-231 cells by normal human mtDNA. For the complete mtDNA replacement, first we isolated mtDNA-less (ρ(0)) MDA-MB-231 cells, and then introduced normal human mtDNA into the ρ(0) MDA-MB-231 cells, and isolated trans-mitochondrial cells (cybrids) carrying nuclear DNA from MDA-MB-231 cells and mtDNA from a normal subject. The normal mtDNA transfer simultaneously induced restoration of mitochondrial respiratory function and suppression of the highly metastatic potential expressed in MDA-MB-231 cells, but did not suppress ROS overproduction. These observations suggest that mitochondrial respiration defects observed in MDA-MB-231 cells are caused by mutations in mtDNA but not in nuclear DNA, and are responsible for expression of the high metastatic potential without using ROS-mediated pathways. Thus, human tumor cells possess an mtDNA-mediated metastatic pathway that is required for expression of the highly metastatic potential in the absence of ROS production.  相似文献   
100.
Crude extracts of the leaves of Spiraea prunifolia Sieb. showed high plant-growth-inhibiting activity comparable to that of S. thunbergii extracts. To isolate the causal compound in S. prunifolia, we performed bioassay-directed purification by monitoring the biological activity per unit weight of the organism containing the bioactive compound (total activity). We isolated 1-O-cis-cinnamoyl-β-D-glucopyranose (cis-CG) and identified it as the most important growth-inhibiting constituent in the crude extracts. We did not detect 6-O-(4′-hydroxy-2′-methylenebutyroyl)-1-O-cis-cinnamoyl-β-D-glucopyranose (cis-BCG) in S. prunifolia, though it is a major plant growth inhibitor in S. thunbergii together with cis-CG. We estimated the cis-CG content in S. prunifolia to be 3.84 mmol kg−1 F.W. This amount is comparable to the cis-CG plus cis-BCG content in S. thunbergii (3.59 mmol kg−1 F.W.). This indicates that S. prunifolia and S. thunbergii have equally high potential to inhibit plant growth, and cis-CG acts as the most important plant-growth inhibitor in S. prunifolia extracts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号