首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   925篇
  免费   87篇
  国内免费   1篇
  2023年   4篇
  2022年   8篇
  2021年   22篇
  2020年   12篇
  2019年   11篇
  2018年   15篇
  2017年   12篇
  2016年   27篇
  2015年   40篇
  2014年   61篇
  2013年   63篇
  2012年   73篇
  2011年   56篇
  2010年   32篇
  2009年   37篇
  2008年   47篇
  2007年   60篇
  2006年   51篇
  2005年   47篇
  2004年   48篇
  2003年   48篇
  2002年   40篇
  2001年   29篇
  2000年   40篇
  1999年   36篇
  1998年   12篇
  1997年   7篇
  1996年   3篇
  1995年   10篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   8篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1969年   2篇
  1968年   1篇
排序方式: 共有1013条查询结果,搜索用时 31 毫秒
61.
Gram-positive pathogens such as staphylococci contain multiple cell wall-anchored proteins that serve as an interface between the microbe and its environment. Some of these proteins act as adhesins and mediate bacterial attachment to host tissues. SdrG is a cell wall-anchored adhesin from Staphylococcus epidermidis that binds to the Bbeta chain of human fibrinogen (Fg) and is necessary and sufficient for bacterial attachment to Fg-coated biomaterials. Here, we present the crystal structures of the ligand binding region of SdrG as an apoprotein and in complex with a synthetic peptide analogous to its binding site in Fg. Analysis of the crystal structures, along with mutational studies of both the protein and of the peptide, reveals that SdrG binds to its ligand with a dynamic "dock, lock, and latch" mechanism. We propose that this mechanism represents a general mode of ligand binding for structurally related cell wall-anchored proteins of gram-positive bacteria.  相似文献   
62.
We have investigated the expression of neuropeptide Y (NPY) in C6 glioma cells after the glutamatergic stimulation by the in situ RT-PCR and immunocytochemical techniques. The expression of NPY mRNA correlated well with immunocytological findings in each series of experiments. NPY protein expression was enhanced by glutamate (1, 10, 50, 100 microM, and 1 mM) dose-dependently, and its expression was slightly increased by N-methyl-D-aspartate (NMDA; 1, 10, 100, 500 microM, and 1 mM) and kainic acid (1, 10, 100, 300 microM, and 1 mM). We pretreated the cells with dopamine, haloperidol, pentylenetetrazol, and muscimol before each stimulation. The pentylenetetrazol and muscimol did not significantly alter the patterns of NPY expression induced by the glutamatergic stimulation. On the other hand, the dopamine and haloperidol pretreatment significantly elevated the levels of NPY expression that were induced by NMDA and kainic acid. Our results indicate that NPY release is closely related to glutamatergic stimulation, and it could be dynamically mediated by GABAergic and dopaminergic costimulation.  相似文献   
63.
Type II activin receptors (ActRII and ActRIIB) are single-transmembrane domain serine/threonine kinase receptors that bind activin to initiate the signaling and cellular responses triggered by this hormone. Inhibin also binds type II activin receptors and antagonizes many activin effects. Here we describe alanine scanning mutagenesis of the ActRII extracellular domain. We identify a cluster of three hydrophobic residues (Phe(42), Trp(60), and Phe(83)) that, when individually mutated to alanine in the context of the full-length receptor, cause the disruption of activin and inhibin binding to ActRII. Each of the alanine-substituted ActRII mutants retaining activin binding maintains the ability to form cross-linked complexes with activin and supports activin cross-linking to the type I activin receptor ALK4. Unlike wild-type ActRII, the three mutants unable to bind activin do not cause an increase in activin signaling when transiently expressed in a corticotroph cell line. Together, our results implicate these residues in forming a critical binding surface on ActRII required for functional interactions with both activin and inhibin. This first identification of a transforming growth factor-beta family member binding site may provide a general basis for characterizing binding sites for other members of the superfamily.  相似文献   
64.
Atrial natriuretic peptide (ANP) is a cardiac hormone that elicits a profound diuresis, natriuresis, and hypotension. As a preliminary study toward ANP gene therapy of cardiovascular disorders, we have cloned a cDNA for mouse preproANP and carried out expression studies in muscle cells. The expression cassette, which was flanked by ITRs from AAV-2, consisted of HCMV IE enhancer/promoter, preproANP gene, and polyadenylation signal from bovine growth hormone. We transfected this expression vector into primary skeletal myoblasts and examined the following points: (1) secretion of immunoreactive ANP, (2) biological activity, and (3) nature of secreted ANP(s). The conditioned media from cells transfected with ANP vector had significantly higher levels of irANP in comparison to mock control. The secreted irANP had biological activity as confirmed by the elevated level of intracellular cGMP in human umbilical vein endothelial cells. Reverse-phase HPLC analysis showed that the processed form of ANP was the predominant form. These results demonstrate that preproANP gene could be ectopically expressed and correctly processed in skeletal myoblasts, which has implications for development of muscle-based ANP gene therapy.  相似文献   
65.
The structural domains contributing to ion permeation and selectivity in K channels were examined in inward-rectifier K(+) channels ROMK2 (Kir1.1b), IRK1 (Kir2.1), and their chimeras using heterologous expression in Xenopus oocytes. Patch-clamp recordings of single channels were obtained in the cell-attached mode with different permeant cations in the pipette. For inward K(+) conduction, replacing the extracellular loop of ROMK2 with that of IRK1 increased single-channel conductance by 25 pS (from 39 to 63 pS), whereas replacing the COOH terminus of ROMK2 with that of IRK1 decreased conductance by 16 pS (from 39 to 22 pS). These effects were additive and independent of the origin of the NH(2) terminus or transmembrane domains, suggesting that the two domains form two resistors in series. The larger conductance of the extracellular loop of IRK1 was attributable to a single amino acid difference (Thr versus Val) at the 3P position, three residues in front of the GYG motif. Permeability sequences for the conducted ions were similar for the two channels: Tl(+) > K(+) > Rb(+) > NH(4)(+). The ion selectivity sequence for ROMK2 based on conductance ratios was NH(4)(+) (1.6) > K(+) (1) > Tl(+) (0.5) > Rb(+) (0.4). For IRK1, the sequence was K(+) (1) > Tl(+) (0.8) > NH(4)(+) (0.6) > Rb(+) (0.1). The difference in the NH(4)(+)/ K(+) conductance (1.6) and permeability (0.09) ratios can be explained if NH(4)(+) binds with lower affinity than K(+) to sites within the pore. The relatively low conductances of NH(4)(+) and Rb(+) through IRK1 were again attributable to the 3P position within the P region. Site-directed mutagenesis showed that the IRK1 selectivity pattern required either Thr or Ser at this position. In contrast, the COOH-terminal domain conferred the relatively high Tl(+) conductance in IRK1. We propose that the P-region and the COOH terminus contribute independently to the conductance and selectivity properties of the pore.  相似文献   
66.
67.
Nelson SW  Iancu CV  Choe JY  Honzatko RB  Fromm HJ 《Biochemistry》2000,39(36):11100-11106
Wild-type porcine fructose-1,6-bisphosphatase (FBPase) has no tryptophan residues. Hence, the mutation of Try57 to tryptophan places a unique fluorescent probe in the structural element (loop 52-72) putatively responsible for allosteric regulation of catalysis. On the basis of steady-state kinetics, circular dichroism spectroscopy, and X-ray crystallography, the mutation has little effect on the functional and structural properties of the enzyme. Fluorescence intensity from the Trp57 mutant is maximal in the presence of divalent cations, fructose 6-phosphate and orthophosphate, which together stabilize an R-state conformation in which loop 52-72 is engaged with the active site. The level of fluorescence emission decreases monotonically with increasing levels of AMP, an allosteric inhibitor, which promotes the T-state, disengaged-loop conformation. The titration of various metal-product complexes of the Trp57 mutant with fructose 2,6-bisphosphate (F26P(2)) causes similar decreases in fluorescence, suggesting that F26P(2) and AMP individually induce similar conformational states in FBPase. Fluorescence spectra, however, are sensitive to the type of divalent cation (Zn(2+), Mn(2+), or Mg(2+)) and suggest conformations in addition to the R-state, loop-engaged and T-state, loop-disengaged forms of FBPase. The work presented here demonstrates the utility of fluorescence spectroscopy in probing the conformational dynamics of FBPase.  相似文献   
68.
Patients with obstructive sleep apnea (OSA) are frequently obese and are predisposed to weight gain. They also have heightened sympathetic drive. We reasoned that noradrenergic activation of beta(3)-receptors on adipocytes would inhibit leptin production, predisposing to obesity in sleep apnea. We therefore tested the hypothesis that obesity and predisposition to weight gain in OSA are associated with low levels of plasma leptin. We prospectively studied 32 male patients (43 +/- 2 yr) with OSA who were newly diagnosed and never treated and who were free of any other diseases. Control measurements were obtained from 32 similarly obese closely matched male subjects (38 +/- 2 yr). Leptin levels were 13.7 +/- 1.3 and 9.2 +/- 1.2 ng/ml in patients with OSA and controls, respectively (P = 0.02). Weight gain over the year before diagnosis was 5.2 +/- 1.7 and 0.5 +/- 0.9 kg in sleep apnea patients and similarly obese control subjects, respectively (P = 0.04). Muscle sympathetic activity was 46 +/- 4 and 30 +/- 4 bursts/min in patients with OSA (n = 16) and control subjects (n = 18), respectively (P = 0.01). Plasma leptin levels are elevated in newly diagnosed otherwise healthy patients with untreated sleep apnea beyond the levels seen in similarly obese control subjects without sleep apnea. Higher leptin levels in OSA, independent of body fat content, suggest that OSA is associated with resistance to the weight-reducing effects of leptin.  相似文献   
69.
The sequential association of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 with CD4 and a seven-transmembrane segment coreceptor such as CCR5 or CXCR4 initiates entry of the virus into its target cell. The N terminus of CCR5, which contains several sulfated tyrosines, plays a critical role in the CD4-dependent association of gp120 with CCR5 and in viral entry. Here we demonstrate that a tyrosine-sulfated peptide based on the N terminus of CCR5, but not its unsulfated analogue, inhibits infection of macrophages and peripheral blood mononuclear cells by CCR5-dependent, but not CXCR4-dependent, HIV-1 isolates. The sulfated peptide also inhibited the association of CCR5-expressing cells with gp120-soluble CD4 complexes and, less efficiently, with MIP-1alpha. Moreover, this peptide inhibited the precipitation of gp120 by 48d and 23e antibodies, which recognize CD4-inducible gp120 epitopes, but not by several other antibodies that recognize proximal epitopes. The ability of the sulfated peptide to block 48d association with gp120 was dependent in part on seven tropism-determining residues in the third variable (V3) and fourth conserved (C4) domains of gp120. These data underscore the important role of the N-terminal sulfate moieties of CCR5 in the entry of R5 HIV-1 isolates and localize a critical contact between gp120 and CCR5.  相似文献   
70.
The DNA2 gene of Saccharomyces cerevisiae is essential for growth and appears to be required for a late stage of chromosomal DNA replication. S. cerevisiae Dna2p (ScDna2p) is a DNA helicase and also a nuclease. We have cloned and sequenced the homologous gene from Xenopus (Xenopus Dna2). Xenopus Dna2p (XDna2p) is 32% identical to ScDna2p, and the similarity extends over the entire length, including but not limited to the five conserved helicase motifs. XDna2p is even more closely related (60% identical) to a partial human cDNA. The Xenopus Dna2 (XDna2) gene was able to complement an S. cerevisiae dna2-1 mutant strain for growth at the nonpermissive temperature, suggesting that XDna2p is a functional as well as a structural homolog of the yeast protein. Recombinant XDna2p was expressed in insect cells and purified. Like the ScDna2p purified from yeast, it is a single-stranded DNA endonuclease and a DNA-dependent ATPase, suggesting that both of these activities are part of the essential function of Dna2p. However, unlike ScDna2p from yeast, recombinant XDna2p showed no DNA helicase activity. When XDna2 was immunodepleted from interphase egg extracts, chromosomal DNA replication was almost completely inhibited. From the size of the residually synthesized DNA from the XDna2-depleted egg extracts, it seems that initiation of DNA replication may be impaired. This interpretation is also supported by the normal DNA replication of M13 single-stranded DNA in the XDna2-depleted egg extracts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号