首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3050篇
  免费   152篇
  国内免费   1篇
  2024年   4篇
  2023年   16篇
  2022年   45篇
  2021年   67篇
  2020年   45篇
  2019年   58篇
  2018年   71篇
  2017年   70篇
  2016年   125篇
  2015年   170篇
  2014年   221篇
  2013年   217篇
  2012年   262篇
  2011年   241篇
  2010年   168篇
  2009年   138篇
  2008年   187篇
  2007年   171篇
  2006年   127篇
  2005年   120篇
  2004年   126篇
  2003年   90篇
  2002年   83篇
  2001年   74篇
  2000年   68篇
  1999年   43篇
  1998年   16篇
  1997年   14篇
  1996年   14篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   15篇
  1991年   12篇
  1990年   11篇
  1989年   14篇
  1988年   9篇
  1987年   6篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1979年   9篇
  1978年   4篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1968年   2篇
排序方式: 共有3203条查询结果,搜索用时 406 毫秒
281.
Aminoacyl-tRNA synthetases (ARSs) are key enzymes involved in protein translation, and both cytosolic and organellar forms are present in the genomes of eukaryotes. In this study, we investigated cellular effects of depletion of organellar forms of ARS using virus-induced gene silencing (VIGS) in Nicotiana benthamiana. VIGS of NbERS and NbSRS, which encode organellar GluRS and SerRS, respectively, resulted in a severe leaf-yellowing phenotype. The NbERS and NbSRS genes were ubiquitously expressed in plant tissues, and induced in response to light. Green fluorescent protein (GFP) fusion proteins of the full-length glutamyl-tRNA synthetase (ERS) and seryl-tRNA synthetase (SRS) of Arabidopsis and GFP fusions to the N-terminal extension of these proteins were all dualtargeted to chloroplasts and mitochondria. At the cell level, depletion of NbERS and NbSRS resulted in dramatically reduced numbers of chloroplasts with reduced sizes and chlorophyll content. The numbers and/or physiology of mitochondria were also severely affected. The abnormal chloroplasts lacked most of the thylakoid membranes and appeared to be degenerating, whereas some of them showed doublet morphology, indicating defective chloroplast division. Pulse-field gel electrophoresis analyses demonstrated that chloroplast DNA in subgenomic sizes is the predominant form in the abnormal chloroplasts. Interestingly, despite severe abnormalities in chloroplasts and mitochondria, expression of many nuclear genes encoding chloroplastor mitochondria-targeted proteins, and chlorophyll biosynthesis genes remained unchanged in the ERS and SRS VIGS lines. This is the first report to analyze the effect of ARS disruption on organelle development in plants.  相似文献   
282.
Lipoic acid is the covalently attached cofactor of several multi-component enzyme complexes that catalyze key metabolic reactions. Attachment of lipoic acid to the lipoyl-dependent enzymes is catalyzed by lipoate-protein ligases (LPLs). In Escherichia coli, two distinct enzymes lipoate-protein ligase A (LplA) and lipB-encoded lipoyltransferase (LipB) catalyze independent pathways for lipoylation of the target proteins. The reaction catalyzed by LplA occurs in two steps. First, LplA activates exogenously supplied lipoic acid at the expense of ATP to lipoyl-AMP. Next, it transfers the enzyme-bound lipoyl-AMP to the epsilon-amino group of a specific lysine residue of the lipoyl domain to give an amide linkage. To gain insight into the mechanism of action by LplA, we have determined the crystal structure of Thermoplasma acidophilum LplA in three forms: (i) the apo form; (ii) the ATP complex; and (iii) the lipoyl-AMP complex. The overall fold of LplA bears some resemblance to that of the biotinyl protein ligase module of the E. coli biotin holoenzyme synthetase/bio repressor (BirA). Lipoyl-AMP is bound deeply in the bifurcated pocket of LplA and adopts a U-shaped conformation. Only the phosphate group and part of the ribose sugar of lipoyl-AMP are accessible from the bulk solvent through a tunnel-like passage, whereas the rest of the activated intermediate is completely buried inside the active site pocket. This first view of the activated intermediate bound to LplA allowed us to propose a model of the complexes between Ta LplA and lipoyl domains, thus shedding light on the target protein/lysine residue specificity of LplA.  相似文献   
283.
To gain more insights about the biological roles of PDK1, we have used the yeast two-hybrid system and in vivo binding assay to identify interacting molecules that associate with PDK1. As a result, serine-threonine kinase receptor-associated protein (STRAP), a transforming growth factor-beta (TGF-beta) receptor-interacting protein, was identified as an interacting partner of PDK1. STRAP was found to form in vivo complexes with PDK1 in intact cells. Mapping analysis revealed that this binding was only mediated by the catalytic domain of PDK1 and not by the pleckstrin homology domain. Insulin enhanced a physical association between PDK1 and STRAP in intact cells, but this insulin-induced association was prevented by wortmannin, a phosphatidylinositol 3-kinase inhibitor. In addition, the association between PDK1 and STRAP was decreased by TGF-beta treatment. Analysis of the activities of the interacting proteins showed that PDK1 kinase activity was significantly increased by coexpression of STRAP, probably through the inhibition of the binding of 14-3-3, a negative regulator, to PDK1. Consistently, knockdown of the endogenous STRAP by the transfection of the small interfering RNA resulted in the decrease of PDK1 kinase activity. PDK1 also exhibited an inhibition of TGF-beta signaling with STRAP by contributing to the stable association between TGF-beta receptor and Smad7. Moreover, confocal microscopic study and immunostaining results demonstrated that PDK1 prevented the nuclear translocation of Smad3 in response to TGF-beta. Knockdown of endogenous PDK1 with small interfering RNA has an opposite effect. Taken together, these results suggested that STRAP acts as an intermediate signaling molecule linking between the phosphatidylinositol 3-kinase/PDK1 and the TGF-beta signaling pathways.  相似文献   
284.
Sodium ascorbate (vitamin C) has a reputation for inconsistent effects upon malignant tumor cells, which vary from growth stimulation to apoptosis induction. Melanoma cells were found to be more susceptible to vitamin C toxicity than any other tumor cells. The present study has shown that sodium ascorbate decreases cellular iron uptake by melanoma cells in a dose- and time-dependent fashion, indicating that intracellular iron levels may be a critical factor in sodium ascorbate-induced apoptosis. Indeed, sodium ascorbate-induced apoptosis is enhanced by the iron chelator, desferrioxamine (DFO) while it is inhibited by the iron donor, ferric ammonium citrate (FAC). Moreover, the inhibitory effects of sodium ascorbate on intracellular iron levels are blocked by addition of transferrin, suggesting that transferrin receptor (TfR) dependent pathway of iron uptake may be regulated by sodium ascorbate. Cells exposed to sodium ascorbate demonstrated down-regulation of TfR expression and this precedes sodium ascorbate-induced apoptosis. Taken together, sodium ascorbate-mediated apoptosis appears to be initiated by a reduction of TfR expression, resulting in a down-regulation of iron uptake followed by an induction of apoptosis. This study demonstrates the specific mechanism of sodium ascorbate-induced apoptosis and these findings support future clinical trial of sodium ascorbate in the prevention of human melanoma relapse.  相似文献   
285.
Non-peptide antagonists of the oxytocin receptor (OTR) have been developed to prevent pre-term labour. The benzoxazinone-based antagonists L-371,257 and L-372,662 display pronounced species-dependent pharmacology with respect to selectivity for the OTR over the V(1a) vasopressin receptor. Examination of receptor sequences from different species identified Ala(318) in helix 7 of the human OTR as a candidate discriminator required for high affinity binding. The mutant receptor [A318G]OTR was engineered and characterised using ligands representing many different chemical classes. Of all the ligands investigated, only the benzoxazinone-based antagonists had decreased affinity for [A318G]OTR. Molecular modelling revealed that Ala(318) provides a direct hydrophobic contact with a methoxy group of L-371,257 and L-372,662.  相似文献   
286.
Reactive oxygen species mediate RANK signaling in osteoclasts   总被引:5,自引:0,他引:5  
RANKL, a member of tumor necrosis factor (TNF) superfamily, regulates the differentiation, activation, and survival of osteoclasts through binding to its cognate receptor, RANK. RANK can interact with several TNF-receptor-associated factors (TRAFs) and activates signaling molecules including Akt, NF-kappaB, and MAPKs. Although the transient elevation of reactive oxygen species (ROS) by receptor activation has been shown to act as a cellular secondary messenger, the involvement of ROS in RANK signaling pathways has been not characterized. In this study, we found that RANKL stimulated ROS generation in osteoclasts. Pretreatment of osteoclasts with the antioxidants N-acetyl-l-cystein and glutathione reduced RANKL-induced Akt, NF-kappaB, and ERK activation. The reduced NF-kappaB activity by antioxidants was associated with decreased IKK activity and IkappaBalpha phosphorylation. In contrast, antioxidants did not prevent TNF-alpha-induced Akt and NF-kappaB activation. Pretreatment with antioxidants also significantly reduced RANKL-induced actin ring formation, required for bone resorbing activity, and osteoclast survival. Taken together, our results suggest that ROS act as mediators in RANKL-induced signaling pathways and cellular events.  相似文献   
287.
288.
Hohng S  Joo C  Ha T 《Biophysical journal》2004,87(2):1328-1337
Fluorescence resonance energy transfer (FRET) measured at the single-molecule level can reveal conformational changes of biomolecules and intermolecular interactions in physiologically relevant conditions. Thus far single-molecule FRET has been measured only between two fluorophores. However, for many complex systems, the ability to observe changes in more than one distance is desired and FRET measured between three spectrally distinct fluorophores can provide a more complete picture. We have extended the single-molecule FRET technique to three colors, using the DNA four-way (Holliday) junction as a model system that undergoes two-state conformational fluctuations. By labeling three arms of the junction with Cy3 (donor), Cy5 (acceptor 1), and Cy5.5 (acceptor 2), distance changes between the donor and acceptor 1, and between the donor and acceptor 2, can be measured simultaneously. Thus we are able to show that the acceptor 1 arm moves away from the donor arm at the same time as the acceptor 2 arm approaches the donor arm, and vice versa, marking the first example of observing correlated movements of two different segments of a single molecule. Our data further suggest that Holliday junction does not spend measurable time with any of the helices unstacked, and that the parallel conformations are not populated to a detectable degree.  相似文献   
289.
290.
ACE1 polymorphism and progression of SARS   总被引:2,自引:0,他引:2  
We have hypothesized that genetic predisposition influences the progression of SARS. Angiotensin converting enzyme (ACE1) insertion/deletion (I/D) polymorphism was previously reported to show association with the adult respiratory distress syndrome, which is also thought to play a key role in damaging the lung tissues in SARS cases. This time, the polymorphism was genotyped in 44 Vietnamese SARS cases, with 103 healthy controls who had had a contact with the SARS patients and 50 controls without any contact history. SARS cases were divided into either non-hypoxemic or hypoxemic groups. Despite the small sample size, the frequency of the D allele was significantly higher in the hypoxemic group than in the non-hypoxemic group (p=0.013), whereas there was no significant difference between the SARS cases and controls, irrespective of a contact history. ACE1 might be one of the candidate genes that influence the progression of pneumonia in SARS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号