全文获取类型
收费全文 | 4960篇 |
免费 | 382篇 |
国内免费 | 262篇 |
专业分类
5604篇 |
出版年
2024年 | 9篇 |
2023年 | 60篇 |
2022年 | 141篇 |
2021年 | 232篇 |
2020年 | 159篇 |
2019年 | 191篇 |
2018年 | 187篇 |
2017年 | 115篇 |
2016年 | 215篇 |
2015年 | 306篇 |
2014年 | 329篇 |
2013年 | 354篇 |
2012年 | 435篇 |
2011年 | 408篇 |
2010年 | 236篇 |
2009年 | 232篇 |
2008年 | 276篇 |
2007年 | 248篇 |
2006年 | 203篇 |
2005年 | 160篇 |
2004年 | 151篇 |
2003年 | 146篇 |
2002年 | 117篇 |
2001年 | 89篇 |
2000年 | 81篇 |
1999年 | 64篇 |
1998年 | 28篇 |
1997年 | 41篇 |
1996年 | 51篇 |
1995年 | 28篇 |
1994年 | 26篇 |
1993年 | 23篇 |
1992年 | 45篇 |
1991年 | 29篇 |
1990年 | 21篇 |
1989年 | 18篇 |
1988年 | 23篇 |
1987年 | 18篇 |
1986年 | 13篇 |
1985年 | 13篇 |
1984年 | 8篇 |
1983年 | 17篇 |
1982年 | 9篇 |
1981年 | 8篇 |
1980年 | 5篇 |
1977年 | 4篇 |
1975年 | 4篇 |
1974年 | 3篇 |
1973年 | 3篇 |
1965年 | 3篇 |
排序方式: 共有5604条查询结果,搜索用时 15 毫秒
71.
Antrodia camphorata is a well-known medicinal mushroom in Taiwan and has been studied for decades, especially with focus on anti-cancer activity. Polysaccharides are the major bioactive compounds reported with anti-cancer activity, but the debates on how they target cells still remain. Research addressing the encapsulation of polysaccharides from A. camphorata extract (ACE) to enhance anti-cancer activity is rare. In this study, ACE polysaccharides were nano-encapsulated in chitosan-silica and silica (expressed as ACE/CS and ACE/S, respectively) to evaluate the apoptosis effect on a hepatoma cell line (Hep G2). The results showed that ACE polysaccharides, ACE/CS and ACE/S all could damage the Hep G2 cell membrane and cause cell death, especially in the ACE/CS group. In apoptosis assays, DNA fragmentation and sub-G1 phase populations were increased, and the mitochondrial membrane potential decreased significantly after treatments. ACE/CS and ACE/S could also increase reactive oxygen species (ROS) generation, induce Fas/APO-1 (apoptosis antigen 1) expression and elevate the proteolytic activities of caspase-3, caspase-8 and caspase-9 in Hep G2 cells. Unsurprisingly, ACE/CS induced a similar apoptosis mechanism at a lower dosage (ACE polysaccharides = 13.2 μg/mL) than those of ACE/S (ACE polysaccharides = 21.2 μg/mL) and ACE polysaccharides (25 μg/mL). Therefore, the encapsulation of ACE polysaccharides by chitosan-silica nanoparticles may provide a viable approach for enhancing anti-tumor efficacy in liver cancer cells. 相似文献
72.
Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain 总被引:2,自引:0,他引:2
Ying-ying Wang Xian-yin Sun Yan Zhao Fan-mei Kong Ying Guo Gui-zhi Zhang Yan-yan Pu Ke WuSi-shen Li 《Plant science》2011,181(1):65-75
DArT and SSR markers were used to saturate and improve a previous genetic map of RILs derived from the cross Chuan35050 × Shannong483. The new map comprised 719 loci, 561 of which were located on specific chromosomes, giving a total map length of 4008.4 cM; the rest 158 loci were mapped to the most likely intervals. The average chromosome length was 190.9 cM and the marker density was 7.15 cM per marker interval. Among the 719 loci, the majority of marker loci were DArTs (361); the rest included 170 SSRs, 100 EST-SSRs, and 88 other molecular and biochemical loci. QTL mapping for fatty acid content in wheat grain was conducted in this study. Forty QTLs were detected in different environments, with single QTL explaining 3.6-58.1% of the phenotypic variations. These QTLs were distributed on 16 chromosomes. Twenty-two QTLs showed positive additive effects, with Chuan35050 increasing the QTL effects, whereas 18 QTLs were negative with increasing effects from Shannong483. Six sets of co-located QTLs for different traits occurred on chromosomes 1B, 1D, 2D, 5D, and 6B. 相似文献
73.
Fan-Jiang Kong Atsushi Oyanagi Setsuko Komatsu 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(1):124-136
Cell wall proteins (CWPs) are important both for maintenance of cell structure and for responses to abiotic and biotic stresses. In this study, a destructive CWP purification procedure was adopted using wheat seedling roots and the purity of the CWP extract was confirmed by minimizing the activity of glucose-6-phosphate dehydrogenase, a cytoplasmic marker enzyme. To determine differentially expressed CWPs under flooding stress, gel-based proteomic and LC-MS/MS-based proteomic techniques were applied. Eighteen proteins were found to be significantly regulated in response to flood by gel-based proteomics and 15 proteins by LC MS/MS-based proteomics. Among the flooding down-regulated proteins, most were related to the glycolysis pathway and cell wall structure and modification. However, the most highly up-regulated proteins in response to flooding belong to the category of defense and disease response proteins. Among these differentially expressed proteins, only methionine synthase, β-1,3-glucanases, and β-glucosidase were consistently identified by both techniques. The down-regulation of these three proteins suggested that wheat seedlings respond to flooding stress by restricting cell growth to avoid energy consumption; by coordinating methionine assimilation and cell wall hydrolysis, CWPs played critical roles in flooding responsiveness. 相似文献
74.
Background and Aim
Calcium has been proposed as a mediator of the chemoprevention of colorectal cancer (CRC), but the comprehensive mechanism underlying this preventive effect is not yet clear. Hence, we conducted this study to evaluate the possible roles and mechanisms of calcium-mediated prevention of CRC induced by 1,2-dimethylhydrazine (DMH) in mice.Methods
For gene expression analysis, 6 non-tumor colorectal tissues of mice from the DMH + Calcium group and 3 samples each from the DMH and control groups were hybridized on a 4×44 K Agilent whole genome oligo microarray, and selected genes were validated by real-time polymerase chain reaction (PCR). Functional analysis of the microarray data was performed using KEGG and Gene Ontology (GO) analyses. Hub genes were identified using Pathway Studio software.Results
The tumor incidence rates in the DMH and DMH + Calcium groups were 90% and 40%, respectively. Microarray gene expression analysis showed that S100a9, Defa20, Mmp10, Mmp7, Ptgs2, and Ang2 were among the most downregulated genes, whereas Per3, Tef, Rnf152, and Prdx6 were significantly upregulated in the DMH + Calcium group compared with the DMH group. Functional analysis showed that the Wnt, cell cycle, and arachidonic acid pathways were significantly downregulated in the DMH + Calcium group, and that the GO terms related to cell differentiation, cell cycle, proliferation, cell death, adhesion, and cell migration were significantly affected. Forkhead box M1 (FoxM1) and nuclear factor kappa-B (NF-κB) were considered as potent hub genes.Conclusion
In the DMH-induced CRC mouse model, comprehensive mechanisms were involved with complex gene expression alterations encompassing many altered pathways and GO terms. However, how calcium regulates these events remains to be studied. 相似文献75.
Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions 总被引:1,自引:0,他引:1
van Peer AF Park SY Shin PG Jang KY Yoo YB Park YJ Lee BM Sung GH James TY Kong WS 《PloS one》2011,6(7):e22249
Background
Mating-type loci of mushroom fungi contain master regulatory genes that control recognition between compatible nuclei, maintenance of compatible nuclei as heterokaryons, and fruiting body development. Regions near mating-type loci in fungi often show adapted recombination, facilitating the generation of novel mating types and reducing the production of self-compatible mating types. Compared to other fungi, mushroom fungi have complex mating-type systems, showing both loci with redundant function (subloci) and subloci with many alleles. The genomic organization of mating-type loci has been solved in very few mushroom species, which complicates proper interpretation of mating-type evolution and use of those genes in breeding programs.Methodology/Principal Findings
We report a complete genetic structure of the mating-type loci from the tetrapolar, edible mushroom Flammulina velutipes mating type A3B3. Two matB3 subloci, matB3a that contains a unique pheromone and matB3b, were mapped 177 Kb apart on scaffold 1. The matA locus of F. velutipes contains three homeodomain genes distributed over 73 Kb distant matA3a and matA3b subloci. The conserved matA region in Agaricales approaches 350 Kb and contains conserved recombination hotspots showing major rearrangements in F. velutipes and Schizophyllum commune. Important evolutionary differences were indicated; separation of the matA subloci in F. velutipes was diverged from the Coprinopsis cinerea arrangement via two large inversions whereas separation in S. commune emerged through transposition of gene clusters.Conclusions/Significance
In our study we determined that the Agaricales have very large scale synteny at matA (∼350 Kb) and that this synteny is maintained even when parts of this region are separated through chromosomal rearrangements. Four conserved recombination hotspots allow reshuffling of large fragments of this region. Next to this, it was revealed that large distance subloci can exist in matB as well. Finally, the genes that were linked to specific mating types will serve as molecular markers in breeding. 相似文献76.
77.
AIMS: To find new insecticidal antibiotics from marine micro-organisms. METHODS AND RESULTS: Strains isolated from seawater and sea sediments from Beidiahe and Dagang of the east coast of China were screened for their insecticidal qualities. The screening was carried out using bioassay of brine shrimp and the insect pest Helicoverpa armigera. The fermentation, preliminary extraction and isolation of Streptomyces sp.173 were carried out. CONCLUSIONS: In total 331 isolates were examined through bioassay of brine shrimp and 40 isolates (12.08%) showed potential insecticidal activities. Of the 40 isolates, one isolate, designated Streptomyces sp.173, was found to have strong insecticidal activity against both brine shrimp and H. armigera, similar to that of avermectin B1. SIGNIFICANCE AND IMPACT OF THE STUDY: The isolated Streptomyces sp.173 has great insecticidal potency. This work indicated that marine micro-organisms could be an important source of insecticidal antibiotics and the improved anti-brine shrimp bioassay is suitable for primary screening. 相似文献
78.
Xingxing Kong Rui Wang Yuan Xue Xiaojun Liu Huabing Zhang Yong Chen Fude Fang Yongsheng Chang 《PloS one》2010,5(7)
Background
Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1α induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood.Results
Here we show that PGC-1α strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1α led to decreased Sirt3 gene expression. PGC-1α activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (−407/−399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRα bound to the identified ERRE and PGC-1α co-localized with ERRα in the mSirt3 promoter. Knockdown of ERRα reduced the induction of Sirt3 by PGC-1α in C2C12 myotubes. Furthermore, Sirt3 was essential for PGC-1α-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1α in C2C12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1α on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1α on mitochondrial biogenesis in C2C12 myotubes.Conclusion
Our results indicate that Sirt3 functions as a downstream target gene of PGC-1α and mediates the PGC-1α effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The elucidation of the molecular mechanisms of SIRT3 regulation and its physiological functions may provide a novel target for treating ROS-related disease. 相似文献79.
Pseudomonas syringae pv. tagetis, a plant pathogen being considered as a biological control agent of Canada thistle (Cirsium arvense), produces tagetitoxin, an inhibitor of RNA polymerase which results in chlorosis of developing shoot tissues. Although the bacterium is known to affect several plant species in the Asteraceae and has been reported in several countries, little is known of its genetic diversity. The genetic relatedness of 24 strains of P. syringae pv. tagetis with respect to each other and to other P. syringae and Pseudomonas savastanoi pathovars was examined using 16S–23S rDNA intergenic spacer (ITS) sequence analysis. The size of the 16S–23S rDNA ITS regions ranged from 508 to 548 bp in length for all 17 P. syringae and P. savastanoi pathovars examined. The size of the 16S–23S rDNA ITS regions for all the P. syringae pv. helianthi and all the P. syringae pv. tagetis strains examined were 526 bp in length. Furthermore, the 16S–23S rDNA ITS regions of both P. syringae pv. tagetis and P. syringae pv. helianthi had DNA signatures at specific nucleotides that distinguished them from the 15 other P. syringae and P. savastanoi pathovars examined. These results provide strong evidence that P. syringae pv. helianthi is a nontoxigenic form of P. syringae pv. tagetis. The results also demonstrated that there is little genetic diversity among the known strains of P. syringae pv. tagetis. The genetic differences that do exist were not correlated with differences in host plant, geographical origin, or the ability to produce toxin. 相似文献
80.
Polarized distribution of IQGAP proteins in gastric parietal cells and their roles in regulated epithelial cell secretion 总被引:1,自引:0,他引:1 下载免费PDF全文
Zhou R Guo Z Watson C Chen E Kong R Wang W Yao X 《Molecular biology of the cell》2003,14(3):1097-1108
Actin cytoskeleton plays an important role in the establishment of epithelial cell polarity. Cdc42, a member of Rho GTPase family, modulates actin dynamics via its regulators, such as IQGAP proteins. Gastric parietal cells are polarized epithelial cells in which regulated acid secretion occurs in the apical membrane upon stimulation. We have previously shown that actin isoforms are polarized to different membrane domains and that the integrity of the actin cytoskeleton is essential for acid secretion. Herein, we show that Cdc42 is preferentially distributed to the apical membrane of gastric parietal cells. In addition, we revealed that two Cdc42 regulators, IQGAP1 and IQGAP2, are present in gastric parietal cells. Interestingly, IQGAP2 is polarized to the apical membrane of the parietal cells, whereas IQGAP1 is mainly distributed to the basolateral membrane. An IQGAP peptide that competes with full-length IQGAP proteins for Cdc42-binding in vitro also inhibits acid secretion in streptolysin-O-permeabilized gastric glands. Furthermore, this peptide disrupts the association of IQGAP and Cdc42 with the apical actin cytoskeleton and prevents the apical membrane remodeling upon stimulation. We propose that IQGAP2 forms a link that associates Cdc42 with the apical cytoskeleton and thus allows for activation of polarized secretion in gastric parietal cells. 相似文献