首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2996篇
  免费   207篇
  国内免费   4篇
  2023年   18篇
  2022年   19篇
  2021年   41篇
  2020年   36篇
  2019年   69篇
  2018年   76篇
  2017年   81篇
  2016年   115篇
  2015年   205篇
  2014年   188篇
  2013年   233篇
  2012年   298篇
  2011年   288篇
  2010年   178篇
  2009年   124篇
  2008年   189篇
  2007年   167篇
  2006年   148篇
  2005年   115篇
  2004年   158篇
  2003年   137篇
  2002年   106篇
  2001年   34篇
  2000年   27篇
  1999年   29篇
  1998年   21篇
  1997年   16篇
  1996年   16篇
  1995年   9篇
  1994年   8篇
  1993年   2篇
  1992年   8篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1986年   4篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1956年   1篇
  1952年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有3207条查询结果,搜索用时 109 毫秒
181.

Introduction

Tuberculosis (TB) remains a primary public health problem worldwide. The number of multidrug-resistant tuberculosis (MDR TB) cases has increased in recent years in Colombia. Knowledge of M. tuberculosis genotypes defined by spoligotyping can help determine the circulation of genotypes that must be controlled to prevent the spread of TB.

Objective

To describe the genotypes of M. tuberculosis using spoligotyping in resistant and drug-sensitive isolates and their possible associations with susceptibility to first-line drugs.

Methods

An analytical observational study was conducted that included 741 isolates of M. tuberculosis from patients. The isolates originated from 31 departments and were obtained by systematic surveillance between 1999 and 2012.

Results

In total 61.94% of the isolates were resistant to 1 or more drugs, and 147 isolates were MDR. In total, 170 genotypes were found in the population structure of Colombian M. tuberculosis isolates. The isolates were mainly represented by four families: LAM (39.9%), Haarlem (19%), Orphan (17%) and T (9%). The SIT42 (LAM 9) was the most common genotype and contained 24.7% of the isolates, followed by the genotypes SIT62 (Haarlem1), SIT53 (T1), and SIT50 (H3). A high clustering of isolates was evident with 79.8% of the isolates classified into 32 groups. The Beijing family was associated with resistant isolates, whereas the Haarlem and T families were associated with sensitive isolates. The Haarlem family was also associated with grouped isolates (p = 0.031).

Conclusions

A high proportion (approximately 80%) of isolates was found in clusters; these clusters were not associated with resistance to first-line drugs. The Beijing family was associated with drug resistance, whereas the T and Haarlem families were associated with susceptibility in the Colombian isolates studied.  相似文献   
182.
183.
Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.  相似文献   
184.

Background

Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by cellular infiltration into the joints, hyperproliferation of synovial cells and bone damage. Available treatments for RA only induce remission in around 30% of the patients, have important adverse effects and its use is limited by their high cost. Therefore, compounds that can control arthritis, with an acceptable safety profile and low production costs are still an unmet need. We have shown, in vitro, that celastrol inhibits both IL-1β and TNF, which play an important role in RA, and, in vivo, that celastrol has significant anti-inflammatory properties. Our main goal in this work was to test the effect of celastrol in the number of sublining CD68 macrophages (a biomarker of therapeutic response for novel RA treatments) and on the overall synovial tissue cellularity and joint structure in the adjuvant-induced rat model of arthritis (AIA).

Methods

Celastrol was administered to AIA rats both in the early (4 days after disease induction) and late (11 days after disease induction) phases of arthritis development. The inflammatory score, ankle perimeter and body weight were evaluated during treatment period. Rats were sacrificed after 22 days of disease progression and blood, internal organs and paw samples were collected for toxicological blood parameters and serum proinflammatory cytokine quantification, as well as histopathological and immunohistochemical evaluation, respectively.

Results

Here we report that celastrol significantly decreases the number of sublining CD68 macrophages and the overall synovial inflammatory cellularity, and halted joint destruction without side effects.

Conclusions

Our results validate celastrol as a promising compound for the treatment of arthritis.  相似文献   
185.

Background

Angiotensin-(1–7) [Ang-(1–7)] counteracts many actions of the renin-angiotensin-aldosterone system. Despite its renoprotective effects, extensive controversy exists regarding the role of Ang-(1–7) in obstructive nephropathy, which is characterized by renal tubulointerstitial fibrosis and apoptosis.

Methods

To examine the effects of Ang-(1–7) in unilateral ureteral obstruction (UUO), male Sprague-Dawley rats were divided into three groups: control, UUO, and Ang-(1–7)-treated UUO rats. Ang-(1–7) was continuously infused (24 μg/[kg·h]) using osmotic pumps. We also treated NRK-52E cells in vitro with Ang II (1 μM) in the presence or absence of Ang-(1–7) (1 μM), Mas receptor antagonist A779 (1 μM), and Mas receptor siRNA (50 nM) to examine the effects of Ang-(1–7) treatment on Ang II-stimulated renal injury via Mas receptor.

Results

Angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R) protein expression was higher in UUO kidneys than in controls. Ang-(1–7) treatment also decreased proapoptotic protein expression in UUO kidneys. Ang-(1–7) also significantly ameliorated TUNEL positive cells in UUO kidneys. Additionally, Ang-(1–7) reduced profibrotic protein expression and decreased the increased tumor growth factor (TGF)-β1/Smad signaling present in UUO kidneys. In NRK-52E cells, Ang II induced the expression of TGF-β1/Smad signaling effectors and proapoptotic and fibrotic proteins, as well as cell cycle arrest, which were attenuated by Ang-(1–7) pretreatment. However, treatment with A779 and Mas receptor siRNA enhanced Ang II-induced apoptosis and fibrosis. Moreover, Ang II increased tumor necrosis factor-α converting enzyme (TACE) and decreased angiotensin-converting enzyme 2 (ACE2) expression in NRK-52E cells, while pretreatment with Ang-(1–7) or A779 significantly inhibited or enhanced these effects, respectively.

Conclusion

Ang-(1–7) prevents obstructive nephropathy by suppressing renal apoptosis and fibrosis, possibly by regulating TGF-β1/Smad signaling and cell cycle arrest via suppression of AT1R expression. In addition, Ang-(1–7) increased and decreased ACE2 and TACE expression, respectively, which could potentially mediate a positive feedback mechanism via the Mas receptor.  相似文献   
186.
Ribose 5-phosphate isomerase is an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, and catalyzes the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Trypanosomatids, including the agent of African sleeping sickness namely Trypanosoma brucei, have a type B ribose-5-phosphate isomerase. This enzyme is absent from humans, which have a structurally unrelated ribose 5-phosphate isomerase type A, and therefore has been proposed as an attractive drug target waiting further characterization. In this study, Trypanosoma brucei ribose 5-phosphate isomerase B showed in vitro isomerase activity. RNAi against this enzyme reduced parasites'' in vitro growth, and more importantly, bloodstream forms infectivity. Mice infected with induced RNAi clones exhibited lower parasitaemia and a prolonged survival compared to control mice. Phenotypic reversion was achieved by complementing induced RNAi clones with an ectopic copy of Trypanosoma cruzi gene. Our results present the first functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B, and show the relevance of an enzyme belonging to the non-oxidative branch of the pentose phosphate pathway in the context of Trypanosoma brucei infection.  相似文献   
187.
The 12 kDa FK506-binding protein (FK506BP12), an immunosuppressor, modulates T cell activation via calcineurin inhibition. In this study, we investigated the ability of PEP-1-FK506BP12, consisting of FK506BP12 fused to the protein transduction domain PEP-1 peptide, to suppress catabolic responses in primary human chondrocytes and in a mouse carrageenan-induced paw arthritis model. Western blotting and immunofluorescence analysis showed that PEP-1-FK506BP12 efficiently penetrated chondrocytes and cartilage explants. In interleukin-1β (IL-1β)-treated chondrocytes, PEP-1-FK506BP12 significantly suppressed the expression of catabolic enzymes, including matrix metalloproteinases (MMPs)-1, -3, and -13 in addition to cyclooxygenase-2, at both the mRNA and protein levels, whereas FK506BP12 alone did not. In addition, PEP-1-FK506BP12 decreased IL-1β-induced phosphorylation of the mitogen-activated protein kinase (MAPK) complex (p38, JNK, and ERK) and the inhibitor kappa B alpha. In the mouse model of carrageenan-induced paw arthritis, PEP-1-FK506BP12 suppressed both carrageenan-induced MMP-13 production and paw inflammation. PEP-1-FK506BP12 may have therapeutic potential in the alleviation of OA progression. [BMB Reports 2015; 48(7): 407-412]  相似文献   
188.
Modeling the phospholipase A1 (PLA1)‐catalyzed partial hydrolysis of soy phosphatidylcholine (PC) in hexane for the production of lysophosphatidylcholine (LPC) and optimizing the reaction conditions using response surface methodology were described. The reaction was performed with 4 g of PC in a stirred batch reactor using a commercial PLA1 (Lecitase Ultra) as the biocatalyst. The effects of temperature, reaction time, water content, and enzyme loading on LPC and glycerylphosphorylcholine (GPC) content in the reaction products were elucidated using the models established. Optimal reaction conditions for maximizing the LPC content while suppressing acyl migration, which causes GPC formation, were as follows: temperature, 60°C; reaction time, 3 h; water content, 10% of PC; and enzyme loading, 1% of PC. When the reaction was conducted with 40 g of PC under these conditions, the reaction products contained 83.7 mol % LPC and were free of GPC. LPC had a higher total unsaturated fatty acid content than original PC had and was mainly composed of linoleic acid (78.0 mol % of the total fatty acids). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:35–41, 2015  相似文献   
189.
It has been proposed that sub-inhibitory concentrations of antibiotics play a role in virulence modulation. In this study, we evaluated the ability of Salmonella enterica serovar Typhimurium (hereafter S. Typhimurium) to colonize systemically BALB/c mice after exposure to a sub-inhibitory concentration of cefotaxime (CTX). In vivo competition assays showed a fivefold increase in systemic colonization of CTX-exposed bacteria when compared to untreated bacteria. To identify the molecular mechanisms involved in this phenomenon, we carried out a high-throughput genetic screen. A transposon library of S. Typhimurium mutants was subjected to negative selection in the presence of a sub-inhibitory concentration of CTX and genes related to anaerobic metabolism, biosynthesis of purines, pyrimidines, amino acids and other metabolites were identified as needed to survive in this condition. In addition, an impaired ability for oxygen consumption was observed when bacteria were cultured in the presence of a sub-inhibitory concentration of CTX. Altogether, our data indicate that exposure to sub-lethal concentrations of CTX increases the systemic colonization of S. Typhimurium in BALB/c mice in part by the establishment of a fitness alteration conducive to anaerobic metabolism.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号