首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42965篇
  免费   3184篇
  国内免费   10篇
  2023年   201篇
  2022年   324篇
  2021年   663篇
  2020年   498篇
  2019年   562篇
  2018年   1317篇
  2017年   1121篇
  2016年   1357篇
  2015年   1991篇
  2014年   1961篇
  2013年   2652篇
  2012年   3127篇
  2011年   2977篇
  2010年   1880篇
  2009年   1613篇
  2008年   2389篇
  2007年   2332篇
  2006年   2268篇
  2005年   1983篇
  2004年   1985篇
  2003年   1794篇
  2002年   1644篇
  2001年   872篇
  2000年   806篇
  1999年   737篇
  1998年   431篇
  1997年   327篇
  1996年   315篇
  1995年   307篇
  1994年   246篇
  1993年   224篇
  1992年   418篇
  1991年   418篇
  1990年   345篇
  1989年   311篇
  1988年   299篇
  1987年   256篇
  1986年   253篇
  1985年   251篇
  1984年   198篇
  1983年   155篇
  1982年   137篇
  1981年   170篇
  1980年   138篇
  1979年   185篇
  1978年   157篇
  1977年   133篇
  1976年   139篇
  1975年   126篇
  1974年   130篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
941.
Apoptosis‐inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram‐negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single‐chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc‐metalloprotease moiety that cleaves the NF‐kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase‐thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.  相似文献   
942.
The soybean–Phytophthora sojae interaction operates on a gene-for-gene relationship, where the product of a resistance gene (Rps) in the host recognizes that of an avirulence gene (Avr) in the pathogen to generate an incompatible reaction. To exploit this form of resistance, one must match with precision the appropriate Rps gene with the corresponding Avr gene. Currently, this association is evaluated by phenotyping assays that are labour-intensive and often imprecise. To circumvent this limitation, we sought to develop a molecular assay that would reveal the avirulence allele of the seven main Avr genes (Avr1a, Avr1b, Avr1c, Avr1d, Avr1k, Avr3a, and Avr6) in order to diagnose with precision the pathotypes of P. sojae isolates. For this purpose, we analysed the genomic regions of these Avr genes in 31 recently sequenced isolates with different virulence profiles and identified discriminant mutations between avirulence and virulence alleles. Specific primers were designed to generate amplicons of a distinct size, and polymerase chain reaction conditions were optimized in a final assay of two parallel runs. When tested on the 31 isolates of known virulence, the assay accurately revealed all avirulence alleles. The test was further assessed and compared to a phenotyping assay on 25 isolates of unknown virulence. The two assays matched in 97% (170/175) of the interactions studied. Interestingly, the sole cases of discrepancy were obtained with Avr3a, which suggests a possible imperfect interaction with Rps3a. This molecular assay offers a powerful and reliable tool to exploit and study with greater precision soybean resistance against P. sojae.  相似文献   
943.
The gram-positive bacterial species Clavibacter capsici causes necrosis and canker in pepper plants. Genomic and functional analyses of C. capsici type strain PF008 have shown that multiple virulence genes exist in its two plasmids. We aimed to identify the key determinants that control the virulence of C. capsici. Pepper leaves inoculated with 54 natural isolates exhibited significant variation in the necrosis. Six isolates showed very low virulence, but their population titres in plants were not significantly different from those of the highly virulent isolates. All six isolates lacked the pCM1Cc plasmid that carries chpG, which has been shown to be required for virulence and encodes a putative serine protease, but two of them, isolates 1,106 and 1,207, had the intact chpG elsewhere in the genome. Genomic analysis of these two isolates revealed that chpG was located in the pCM2Cc plasmid, and two highly homologous regions were present next to the chpG locus. The chpG expression in isolate 1,106 was not induced in plants. Introduction of chpG of the PF008 strain into the six low-virulence isolates restored their virulence to that of PF008. Our findings indicate that there are at least three different variant groups of C. capsici and that the plasmid composition and the chpG gene are critical for determining the virulence level. Moreover, our findings also indicate that the virulence level of C. capsici does not directly correlate with bacterial titres in plants.  相似文献   
944.
945.
Biological pathways play an important role in the occurrence, development and recovery of complex diseases, such as cancers, which are multifactorial complex diseases that are generally caused by mutation of multiple genes or dysregulation of pathways. We propose a path-specific effect statistic (PSE) to detect the differential specific paths under two conditions (e.g. case VS. control groups, exposure Vs. nonexposure groups). In observational studies, the path-specific effect can be obtained by separately calculating the average causal effect of each directed edge through adjusting for the parent nodes of nodes in the specific path and multiplying them under each condition. Theoretical proofs and a series of simulations are conducted to validate the path-specific effect statistic. Applications are also performed to evaluate its practical performances. A series of simulation studies show that the Type I error rates of PSE with Permutation tests are more stable at the nominal level 0.05 and can accurately detect the differential specific paths when comparing with other methods. Specifically, the power reveals an increasing trends with the enlargement of path-specific effects and its effect differences under two conditions. Besides, the power of PSE is robust to the variation of parent or child node of the nodes on specific paths. Application to real data of Glioblastoma Multiforme (GBM), we successfully identified 14 positive specific pathways in mTOR pathway contributing to survival time of patients with GBM. All codes for automatic searching specific paths linking two continuous variables and adjusting set as well as PSE statistic can be found in supplementary materials.  The proposed PSE statistic can accurately detect the differential specific pathways contributing to complex disease and thus potentially provides new insights and ways to unlock the black box of disease mechanisms.  相似文献   
946.
While NLRP3‐inflammasome has been implicated in cardiovascular diseases, its role in physiological cardiac aging is largely unknown. During aging, many alterations occur in the organism, which are associated with progressive impairment of metabolic pathways related to insulin resistance, autophagy dysfunction, and inflammation. Here, we investigated the molecular mechanisms through which NLRP3 inhibition may attenuate cardiac aging. Ablation of NLRP3‐inflammasome protected mice from age‐related increased insulin sensitivity, reduced IGF‐1 and leptin/adiponectin ratio levels, and reduced cardiac damage with protection of the prolongation of the age‐dependent PR interval, which is associated with atrial fibrillation by cardiovascular aging and reduced telomere shortening. Furthermore, old NLRP3 KO mice showed an inhibition of the PI3K/AKT/mTOR pathway and autophagy improvement, compared with old wild mice and preserved Nampt‐mediated NAD+ levels with increased SIRT1 protein expression. These findings suggest that suppression of NLRP3 prevented many age‐associated changes in the heart, preserved cardiac function of aged mice and increased lifespan.  相似文献   
947.
Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well‐defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4‐fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e?8). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11–31 years old, and a greater than 90% reduction is observed from the ages of 34–54 years. Based on recent investigations linking tryptophan with abundance of indole and other “healthy” longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively “young” age of 34 and, particularly, in the elderly are recommended.  相似文献   
948.
949.
950.
Journal of Physiology and Biochemistry - Thermogenic (brown and beige) adipose tissues improve glucose and lipid homeostasis and therefore represent putative targets to cure obesity and related...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号