首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   584篇
  免费   42篇
  国内免费   2篇
  628篇
  2022年   7篇
  2021年   5篇
  2020年   7篇
  2019年   3篇
  2018年   11篇
  2017年   9篇
  2016年   10篇
  2015年   15篇
  2014年   33篇
  2013年   25篇
  2012年   43篇
  2011年   39篇
  2010年   14篇
  2009年   23篇
  2008年   34篇
  2007年   42篇
  2006年   32篇
  2005年   31篇
  2004年   30篇
  2003年   41篇
  2002年   29篇
  2001年   11篇
  2000年   8篇
  1999年   13篇
  1998年   7篇
  1997年   4篇
  1996年   8篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   3篇
  1990年   2篇
  1989年   8篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1952年   1篇
  1947年   1篇
排序方式: 共有628条查询结果,搜索用时 15 毫秒
101.
The expression of transmembrane transporter multidrug resistance-associated protein 1 (MRP1) confers the multidrug-resistant phenotype (MDR) on cancer cells. Since the activity of the other MDR transporter, P-glycoprotein, is sensitive to membrane perturbation, we aimed to check whether the changes in lipid bilayer properties induced by flavones (apigenin, acacetin) and flavonols (morin, myricetin) were related to their MRP1 inhibitory activity. All the flavonoids inhibited the efflux of MRP1 fluorescent substrate from human erythrocytes and breast cancer cells. Morin was also found to stimulate the ATPase activity of erythrocyte ghosts. All flavonoids intercalated into phosphatidylcholine bilayers as judged by differential scanning calorimetry and fluorescence spectroscopy with the use of two carbocyanine dyes. The model of an intramembrane localization for flavones and flavonols was proposed. No clear relationship was found between the membrane-perturbing activity of flavonoids and their potency to inhibit MRP1. We concluded that mechanisms other than perturbation of the lipid phase of membranes were responsible for inhibition of MRP1 by the flavonoids.  相似文献   
102.
In field experiments over a period of five years the effects of farming systems and habitat structure were investigated on staphylinid assembly in Central European apple and pear orchards. The investigated farms were placed in three different geographical regions with different environmental conditions (agricultural lowland environment, regularly flooded area and woodland area of medium height mountains). During the survey, a total number of 6,706 individuals belonging to 247 species were collected with pitfall traps. The most common species were: Dinaraea angustula, Omalium caesum, Drusilla canaliculata, Oxypoda abdominale, Philonthus nitidulus, Dexiogya corticina, Xantholinus linearis, X. longiventris, Aleochara bipustulata, Mocyta orbata, Oligota pumilio, Platydracus stercorarius, Olophrum assimile, Tachyporus hypnorum, T. nitidulus and Ocypus olens. The most characteristic species in conventionally treated orchards with sandy soil were: Philonthuss nitidulus, Tachyporus hypnorum, and Mocyta orbata, while species to be found in the same regions, but frequent in abandoned orchards as well were: Omalium caesum, Oxypoda abdominale, Xantholinus linearis and Drusilla canaliculata. The species Dinaraea angustula, Oligota pumilio, Dexiogya corticina, Xantholinus longiventris, Tachyporus nitidulus and Ocypus olens have a different level of preferences towards the conventionally treated orchards in clay soil. The species composition of the staphylinid fauna in apple and pear orchards could not be considered uniform. The environmental conditions and the soil together have a significant influence upon the richness of species, and the cumulative effects of these factors can modify even the dominance structures of the communities.  相似文献   
103.
WRKY transcription factors   总被引:7,自引:0,他引:7  
  相似文献   
104.
105.
Inhaled short-lived radon progenies may deposit in bronchial airways and interact with the epithelium by the emission of alpha particles. Simulation of the related radiobiological effects requires the knowledge of space and time distributions of alpha particle hits and biological endpoints. Present modelling efforts include simulation of radioaerosol deposition patterns in a central bronchial airway bifurcation, modelling of human bronchial epithelium, generation of alpha particle tracks, and computation of spatio-temporal distributions of cell nucleus hits, cell killing and cell transformation events. Simulation results indicate that the preferential radionuclide deposition at carinal ridges plays an important role in the space and time evolution of the biological events. While multiple hits are generally rare for low cumulative exposures, their probability may be quite high at the carinal ridges of the airway bifurcations. Likewise, cell killing and transformation events also occur with higher probability in this area. In the case of uniform surface activities, successive hits as well as cell killing and transformation events within a restricted area (say 0.5 mm2) are well separated in time. However, in the case of realistic inhomogeneous deposition, they occur more frequently within the mean cycle time of cells located at the carinal ridge even at low cumulative doses. The site-specificity of radionuclide deposition impacts not only on direct, but also on non-targeted radiobiological effects due to intercellular communication. Incorporation of present results into mechanistic models of carcinogenesis may provide useful information concerning the dose–effect relationship in the low-dose range.  相似文献   
106.
Alterations in temperature adaptation processes and changes in the content of stress-related compounds, polyamines and salicylic acid were evaluated in Atnoa1 (NO-associated 1) Arabidopsis mutant. The Fv/Fm chlorophyll-a fluorescence induction parameter and the actual quantum yield were significantly lower in the Atnoa1 mutant than in the wild-type. In the wild-type Col-0, the fastest increase in the non-photochemical quenching (NPQ) occurred in plants pre-treated at low temperature (4 °C), while the slowest was in those adapted to 30 °C. The NPQ showed not only a substantially increased level in the light-adapted state, but also more rapid light induction after the dark-adapted state in the Atnoa1 mutant than in the wild-type. The results of freezing tests indicated that both the wild-type and the mutant had better freezing tolerance after cold hardening, since no significant differences were found between the genotypes. The level of putrescine increased substantially, while that of spermine decreased by the end of the cold-hardening (4 °C, 4 d) period. The quantity of spermidine in Atnoa1 was significantly higher than in Col-0, at both control and cold-hardening temperatures. A similar trend was observed for spermine, but only under control conditions. The mutant plants showed substantially higher salicylic acid (SA) contents for both the free and bound forms. This difference was significant not only in the control, but also in the cold-hardened plants. These results suggest that there is a compensation mechanism in Atnoa1 mutant Arabidopsis plants to reduce the negative effects of the mutation. These adaptation processes include the stimulation of photoprotection and alterations in the SA and polyamine compositions.  相似文献   
107.
108.
The Tyr402His polymorphism of complement factor H (FH) with 20 short complement regulator (SCR) domains is associated with age-related macular degeneration (AMD). How FH contributes to disease pathology is not clear. Both FH and high concentrations of zinc are found in drusen deposits, the key feature of AMD. Heterozygous FH is inhibited by zinc, which causes FH to aggregate. Here, zinc binding to homozygous FH was studied. By analytical ultracentrifugation, large amounts of oligomers were observed with both the native Tyr402 and the AMD-risk His402 homozygous allotypes of FH and both the recombinant SCR-6/8 allotypes with Tyr/His402. X-ray scattering also showed that both FH and SCR-6/8 allotypes strongly aggregated at > 10 μM zinc. The SCR-1/5 and SCR-16/20 fragments were less likely to bind zinc. These observations were supported by bioinformatics predictions. Starting from known zinc binding sites in crystal structures, we predicted 202 putative partial surface zinc binding sites in FH, most of which were in SCR-6. Metal site prediction web servers also suggested that SCR-6 and other domains bind zinc. Predicted SCR-6/8 dimer structures showed that zinc binding sites could be formed at the protein-protein interface that would lead to daisy-chained oligomers. It was concluded that zinc binds weakly to FH at multiple surface locations, most probably within the functionally important SCR-6/8 domains, and this explains why zinc inhibits FH activity. Given the high pathophysiological levels of bioavailable zinc present in subretinal deposits, we discuss how zinc binding to FH may contribute to deposit formation and inflammation associated with AMD.  相似文献   
109.

Background

Owing to recent discoveries of many hydrogen sulfide-mediated physiological processes, sulfide biology is in the focus of scientific research. However, the promiscuous chemical properties of sulfide pose complications for biological studies, which led to accumulation of controversial observations in the literature.

Scope of review

We intend to provide an overview of fundamental thermodynamic and kinetic features of sulfide redox- and coordination-chemical reactions and protonation equilibria in relation to its biological functions. In light of these chemical properties we review the strengths and limitations of the most commonly used sulfide detection methods and recently developed fluorescent probes. We also give a personal perspective on blood and tissue sulfide measurements based on proposed biomolecule–sulfide interactions and point out important chemical aspects of handling sulfide reagent solutions.

Major conclusions

The diverse chemistries of sulfide detection methods resulted in orders of magnitude differences in measured physiological sulfide levels. Investigations that were aimed to dissect the underlying molecular reasons responsible for these controversies made the important recognition that there are large sulfide reserves in biological systems. These sulfide pools are tightly regulated in a dynamic manner and they are likely to play a major role in regulation of endogenous-sulfide-mediated biological functions and avoiding toxic side effects.

General significance

Working with sulfide is challenging, because it requires considerable amounts of chemical knowledge to adequately handle reagent sulfide solutions and interpret biological observations. Therefore, we propose that a rigorous chemical approach could aid the reconciliation of the increasing number of controversies in sulfide biology. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   
110.
Freezing tolerance is the result of a wide range of physical and biochemical processes, such as the induction of antifreeze proteins, changes in membrane composition, the accumulation of osmoprotectants, and changes in the redox status, which allow plants to function at low temperatures. Even in frost-tolerant species, a certain period of growth at low but nonfreezing temperatures, known as frost or cold hardening, is required for the development of a high level of frost hardiness. It has long been known that frost hardening at low temperature under low light intensity is much less effective than under normal light conditions; it has also been shown that elevated light intensity at normal temperatures may partly replace the cold-hardening period. Earlier results indicated that cold acclimation reflects a response to a chloroplastic redox signal while the effects of excitation pressure extend beyond photosynthetic acclimation, influencing plant morphology and the expression of certain nuclear genes involved in cold acclimation. Recent results have shown that not only are parameters closely linked to the photosynthetic electron transport processes affected by light during hardening at low temperature, but light may also have an influence on the expression level of several other cold-related genes; several cold-acclimation processes can function efficiently only in the presence of light. The present review provides an overview of mechanisms that may explain how light improves the freezing tolerance of plants during the cold-hardening period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号