首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
  123篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   5篇
  2009年   2篇
  2008年   8篇
  2007年   9篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   11篇
  2002年   7篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
91.
Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.  相似文献   
92.
Heparan sulfate (HS) and heparin bind to virtually all chemokines and have been shown to play critical roles in the regulation of their activities. However, both binding mechanisms and structural features involved in chemokine-HS interactions remain poorly defined. In the study presented here, we analyzed the binding of heparin to RANTES(9-68), a N-terminally truncated form of the CC-chemokine RANTES. Using biochemical and surface plasmon resonance (BIAcore system) approaches, we showed that the RANTES(9-68)-heparin interaction was characterized by a complex binding model that involved dimerization of the chemokine through a mechanism of positive cooperativity. Since RANTES(9-68) remains monomeric in solution, we concluded that heparin induced chemokine dimerization. The structure of a complex involving a RANTES dimer and a heparin heptadecasaccharide was proposed by molecular modeling. This model was used to design a dimer of "head to head" coupled octasaccharides that would fit the internal symmetry of the chemokine dimer. This engineered oligosaccharide bound RANTES(9-68) much better than a natural heparin fragment of the same length, further supporting the interaction process and the proposed structural model. Altogether, the data reported here provide a basis for understanding the mechanisms by which HS modulates RANTES functions.  相似文献   
93.
Sialyltransferases (STs) represent an important group of enzymes that transfer N-acetylneuraminic acid (Neu5Ac) from cytidine monophosphate-Neu5Ac to various acceptor substrates. In higher animals, sialylated oligosaccharide structures play crucial roles in many biological processes but also in diseases, notably in microbial infection and cancer. Cell surface sialic acids have also been found in a few microorganisms, mainly pathogenic bacteria, and their presence is often associated with virulence. STs are distributed into five different families in the CAZy database (http://www.cazy.org/). On the basis of crystallographic data available for three ST families and fold recognition analysis for the two other families, STs can be grouped into two structural superfamilies that represent variations of the canonical glycosyltransferase (GT-A and GT-B) folds. These two superfamilies differ in the nature of their active site residues, notably the catalytic base (a histidine or an aspartate residue). The observed structural and functional differences strongly suggest that these two structural superfamilies have evolved independently.  相似文献   
94.
Meyer S  Tefsen B  Imberty A  Geyer R  van Die I 《Glycobiology》2007,17(10):1104-1119
Recognition of pathogen-derived carbohydrate constituents by antigen presenting cells is an important step in the induction of protective immunity. Here we investigated the interaction of L-SIGN (liver/lymph node specific ICAM-3-grabbing nonintegrin), a C-type lectin that functions as antigen receptor on human liver sinusoidal endothelial cells, with egg-derived glycan antigens of the parasitic trematode Schistosoma mansoni. Our data demonstrate that L-SIGN binds both schistosomal soluble egg antigens (SEA) and egg glycosphingolipids, and can mediate internalization of SEA by L-SIGN expressing cells. Binding and internalization of SEA was strongly reduced after treatment of SEA with endoglycosidase H, whereas defucosylation affected neither binding nor internalization. These data indicate that L-SIGN predominantly interacts with oligomannosidic N-glycans of SEA. In contrast, binding to egg glycosphingolipids was completely abolished after defucosylation. Our data show that L-SIGN binds to a glycosphingolipid fraction containing fucosylated species with compositions of Hex(1)HexNAc(5-7)dHex(3-6)Cer, as evidenced by mass spectrometry. The L-SIGN "gain of function" mutant Ser363Val, which binds fucosylated Lewis antigens, did not bind to this fucosylated egg glycosphingolipid fraction, suggesting that L-SIGN displays different modes in binding fucoses of egg glycosphingolipids and Lewis antigens, respectively. Molecular modeling studies indicate that the preferred binding mode of L-SIGN to the respective fucosylated egg glycosphingolipid oligosaccharides involves a Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc tetrasaccharide at the nonreducing end. In conclusion, our data indicate that L-SIGN recognizes both oligomannosidic N-glycans and multiply fucosylated carbohydrate motifs within Schistosoma egg antigens, which demonstrates that L-SIGN has a broad but specific glycan recognition profile.  相似文献   
95.
A novel bioeliminable amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer end-capped by a mannose residue was synthesized by sequential controlled polymerization of ethylene oxide and epsilon-caprolactone, followed by the coupling of a reactive mannose derivative to the PEO chain end. The anionic polymerization of ethylene oxide was first initiated by potassium 2-dimethylaminoethanolate. The ring-opening polymerization of epsilon-caprolactone was then initiated by the omega-hydroxy end-group of PEO previously converted into an Al alkoxide. Finally, the saccharidic end-group was attached by quaternization of the tertiary amine alpha-end-group of the PEO-b-PCL with a brominated mannose derivative. The copolymer was fully characterized in terms of chemical composition and purity by high-resolution NMR spectroscopy and size exclusion chromatography. Furthermore, measurements with a pendant drop tensiometer showed that both the mannosylated copolymer and the non-mannosylated counterpart significantly decreased the dichloromethane/water interfacial tension. Moreover, these amphiphilic copolymers formed monodisperse spherical micelles in water with an average diameter of approximately 11 nm as measured by dynamic light scattering and cryo-transmission electron microscopy. The availability of mannose as a specific recognition site at the surface of the micelles was proved by isothermal titration microcalorimetry (ITC), using the BclA lectin (from Burkholderia cenocepacia), which interacts selectively with alpha-D-mannopyranoside derivatives. The thermodynamic parameters of the lectin/mannose interaction were extracted from the ITC data. These colloidal systems have great potential for drug targeting and vaccine delivery systems.  相似文献   
96.
Helix pomatia agglutinin (HPA) is a N-acetylgalactosamine (GalNAc) binding lectin found in the albumen gland of the roman snail. As a constituent of perivitelline fluid, HPA protects fertilized eggs from bacteria and is part of the innate immunity system of the snail. The peptide sequence deduced from gene cloning demonstrates that HPA belongs to a family of carbohydrate-binding proteins recently identified in several invertebrates. This domain is also present in discoidin from the slime mold Dictyostelium discoideum. Investigation of the lectin specificity was performed with the use of glycan arrays, demonstrating that several GalNAc-containing oligosaccharides are bound and rationalizing the use of this lectin as a cancer marker. Titration microcalorimetry performed on the interaction between HPA and GalNAc indicates an affinity in the 10(-4) M range with an enthalpy-driven binding mechanism. The crystal structure of HPA demonstrates the occurrence of a new beta-sandwich lectin fold. The hexameric quaternary state was never observed previously for a lectin. The high resolution structure complex of HPA with GalNAc characterizes a new carbohydrate binding site and rationalizes the observed preference for alphaGalNAc-containing oligosaccharides.  相似文献   
97.
Aleuria aurantia lectin is a fungal protein composed of two identical 312-amino acid subunits that specifically recognizes fucosylated glycans. The crystal structure of the lectin complexed with fucose reveals that each monomer consists of a six-bladed beta-propeller fold and of a small antiparallel two-stranded beta-sheet that plays a role in dimerization. Five fucose residues were located in binding pockets between the adjacent propeller blades. Due to repeats in the amino acid sequence, there are strong similarities between the sites. Oxygen atoms O-3, O-4, and O-5 of fucose are involved in hydrogen bonds with side chains of amino acids conserved in all repeats, whereas O-1 and O-2 interact with a large number of water molecules. The nonpolar face of each fucose residue is stacked against the aromatic ring of a Trp or Tyr amino acid, and the methyl group is located in a highly hydrophobic pocket. Depending on the precise binding site geometry, the alpha- or beta-anomer of the fucose ligand is observed bound in the crystal. Surface plasmon resonance experiments conducted on a series of oligosaccharides confirm the broad specificity of the lectin, with a slight preference for alphaFuc1-2Gal disaccharide. This multivalent carbohydrate recognition fold is a new prototype of lectins that is proposed to be involved in the host recognition strategy of several pathogenic organisms including not only the fungi Aspergillus but also the phytopathogenic bacterium Ralstonia solanacearum.  相似文献   
98.
Glycosyltransferases (GTs) catalyze the transfer of a sugar moiety from an activated donor sugar onto saccharide and nonsaccharide acceptors. A sequence-based classification spreads GTs in many families thus reflecting the variety of molecules that can be used as acceptors. In contrast, this enzyme family is characterized by a more conserved three-dimensional architecture. Until recently, only two different folds (GT-A and GT-B) have been identified for solved crystal structures. The recent report of a structure for a bacterial sialyltransferase allows the definition of a new fold family. Progress in the elucidation of the structures and mechanisms of GTs are discussed in this review. To accommodate the growing number of crystal structures, we created the 3D-Glycosyltransferase database to gather structural information concerning this class of enzymes.  相似文献   
99.
Human immunodeficiency virus (HIV) attachment to host cells is a multi-step process that involves interaction of the viral envelope gp120 with the primary receptor CD4 and coreceptors. HIV gp120 also binds to other cell surface components, including heparan sulfate (HS), a sulfated polysaccharide whose wide interactive properties are exploited by many pathogens for attachment and concentration at the cell surface. To analyze the structural features of gp120 binding to HS, we used soluble CD4 to constrain gp120 in a specific conformation. We first found that CD4 induced conformational change of gp120, dramatically increasing binding to HS. We then showed that HS binding interface on gp120 comprised, in addition to the well characterized V3 loop, a CD4-induced epitope. This epitope is efficiently targeted by nanomolar concentrations of size-defined heparin/HS-derived oligosaccharides. Because this domain of the protein also constitutes the binding site for the viral coreceptors, these results support an implication of HS at late stages of the virus-cell attachment process and suggest potential therapeutic applications.  相似文献   
100.
Plants produce a plethora of structurally diverse natural products. The final step in their biosynthesis is often a glycosylation step catalyzed by a family 1 glycosyltransferase (GT). In biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor, the UDP-glucosyltransferase UGT85B1 catalyzes the conversion of p-hydroxymandelonitrile into dhurrin. A structural model of UGT85B1 was built based on hydrophobic cluster analysis and the crystal structures of two bacterial GTs, GtfA and GtfB, which each showed approximately 15% overall amino acid sequence identity to UGT85B1. The model enabled predictions about amino acid residues important for catalysis and sugar donor specificity. p-Hydroxymandelonitrile and UDP-glucose (Glc) were predicted to be positioned within hydrogen-bonding distance to a glutamic acid residue in position 410 facilitating sugar transfer. The acceptor was packed within van der Waals distance to histidine H23. Serine S391 and arginine R201 form hydrogen bonds to the pyrophosphate part of UDP-Glc and hence stabilize binding of the sugar donor. Docking of UDP sugars predicted that UDP-Glc would serve as the sole donor sugar in UGT85B1. This was substantiated by biochemical analyses. The predictive power of the model was validated by site-directed mutagenesis of selected residues and using enzyme assays. The modeling approach has provided a tool to design GTs with new desired substrate specificities for use in biotechnological applications. The modeling identified a hypervariable loop (amino acid residues 156-188) that contained a hydrophobic patch. The involvement of this loop in mediating binding of UGT85B1 to cytochromes P450, CYP79A1, and CYP71E1 within a dhurrin metabolon is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号