首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2617篇
  免费   176篇
  国内免费   1篇
  2794篇
  2022年   14篇
  2021年   36篇
  2020年   17篇
  2019年   16篇
  2018年   24篇
  2017年   27篇
  2016年   46篇
  2015年   62篇
  2014年   85篇
  2013年   125篇
  2012年   156篇
  2011年   142篇
  2010年   108篇
  2009年   95篇
  2008年   136篇
  2007年   162篇
  2006年   133篇
  2005年   134篇
  2004年   132篇
  2003年   131篇
  2002年   120篇
  2001年   62篇
  2000年   53篇
  1999年   72篇
  1998年   29篇
  1997年   35篇
  1996年   35篇
  1995年   28篇
  1994年   25篇
  1993年   17篇
  1992年   50篇
  1991年   41篇
  1990年   53篇
  1989年   48篇
  1988年   32篇
  1987年   33篇
  1986年   33篇
  1985年   28篇
  1984年   22篇
  1983年   20篇
  1982年   32篇
  1981年   23篇
  1980年   17篇
  1979年   17篇
  1978年   8篇
  1977年   11篇
  1975年   12篇
  1973年   10篇
  1969年   8篇
  1968年   9篇
排序方式: 共有2794条查询结果,搜索用时 15 毫秒
11.
It is known that cisplatin induces the excretion of zinc from the urine and thereby reduces its serum concentration. However, the fluctuation of these trace elements during or after cisplatin-based chemotherapy has not been evaluated. To answer this question, we performed a clinical study in esophageal cancer patients undergoing cisplatin-based chemotherapy. Eighteen patients with esophageal cancer who were not able to swallow food or water orally due to complete stenosis of the esophagus were evaluated. The patients were divided into a control group [total parenteral nutrition (TPN) alone for 28?days, ten cases] and an intervention group (TPN with additional trace elements for 28?days, eight cases). The serum concentrations of zinc, iron, copper, manganese, triiodothyronin (T3), and thyroxin (T4), as alternative indicators of iodine, were measured on days?0, 14, and 28 of treatment, and statistically analyzed on day?28. In the control group, the serum concentration of copper was significantly decreased from 135.4 (day?0) to 122.1???g/ml (day?14), and finally to 110.6???g/ml (day?28, p?=?0.015). The concentration of manganese was also significantly decreased from 1.34 (day?0) to 1.17???g/ml (day?14) and finally to 1.20 (day?28, p?=?0.049). The levels of zinc, iron, T3, and T4 were not significantly changed. In the intervention group, the supplementation with trace elements successfully prevented these decreases in their concentrations. TPN with supplementary trace elements is preferable and recommended for patients who are undergoing chemotherapy in order to maintain the patients?? nutrient homeostasis.  相似文献   
12.
Accumulating evidence suggests that pathogenic TAR DNA-binding protein (TDP)-43 fragments contain a partial RNA-recognition motif domain 2 (RRM2) in amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration. However, the molecular basis for how this domain links to the conformation and function of TDP-43 is unclear. Previous crystal analyses have documented that the RRM2-DNA complex dimerizes under acidic and high salt conditions, mediated by the intermolecular hydrogen bonds of Glu246-Ile249 and Asp247-Asp247. The aims of this study were to investigate the roles of Glu246 and Asp247 in the molecular assembly of RRM2 under physiological conditions, and to evaluate their potential use as markers for TDP-43 misfolding due to the aberrantly exposed dimer interface. Unexpectedly, gel filtration analyses showed that, regardless of DNA interaction, the RRM2 domain remained as a stable monomer in phosphate-buffered saline. Studies using substitution mutants revealed that Glu246 and, especially, Asp247 played a crucial role in preserving the functional RRM2 monomers. Substitution to glycine at Glu246 or Asp247 induced the formation of fibrillar oligomers of RRM2 accompanied by the loss of DNA-binding affinity, which also affected the conformation and the RNA splicing function of full-length TDP-43. A novel monoclonal antibody against peptides containing Asp247 was found to react with TDP-43 inclusions of ALS patients and mislocalized cytosolic TDP-43 in cultured cells, but not with nuclear wild-type TDP-43. Our findings indicate that Glu246 and Asp247 play pivotal roles in the proper conformation and function of TDP-43. In particular, Asp247 should be studied as a molecular target with an aberrant conformation related to TDP-43 proteinopathy.  相似文献   
13.
Spermatogenesis originates from a small number of spermatogonial stem cells that reside on the basement membrane and undergo self-renewal division to support spermatogenesis throughout the life of adult animals. Although the recent development of a technique to culture spermatogonial stem cells allowed reproduction of self-renewal division in vitro, much remains unknown about how spermatogonial stem cells are regulated. In this study, we found that spermatogonial stem cells could be cultured in an anchorage-independent manner, which is characteristic of stem cells from other types of self-renewing tissues. Although the cultured cells grew slowly (doubling time, approximately 4.7 days), they expressed markers of spermatogonia, and grew exponentially for at least 5 months to achieve 1.5 x 10(10) -fold expansion. The cultured cells underwent spermatogenesis following transplantation into the seminiferous tubules of infertile animals and fertile offspring were obtained by microinsemination of germ cells that had developed within the testes of recipients of the cultured cells. These results indicate that spermatogonial stem cells can undergo anchorage-independent, self-renewal division, and suggest that stem cells have the common property to survive and proliferate in the absence of exogenous substrata.  相似文献   
14.
Several chemotherapeutic drugs have immune-modulating effects. For example, cyclophosphamide (CP) and gemcitabine (GEM) diminish immunosuppression by regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), respectively. Here, we show that intermittent (metronomic) chemotherapy with low-dose CP plus GEM can induce anti-tumor T cell immunity in CT26 colon carcinoma-bearing mice. Although no significant growth suppression was observed by injections of CP (100 mg/kg) at 8-day intervals or those of CP (50 mg/kg) at 4-day intervals, CP injection (100 mg/kg) increased the frequency of tumor peptide-specific T lymphocytes in draining lymph nodes, which was abolished by two injections of CP (50 mg/kg) at a 4-day interval. Alternatively, injection of GEM (50 mg/kg) was superior to that of GEM (100 mg/kg) in suppressing tumor growth in vivo, despite the smaller dose. When CT26-bearing mice were treated with low-dose (50 mg/kg) CP plus (50 mg/kg) GEM at 8-day intervals, tumor growth was suppressed without impairing T cell function; the effect was mainly T cell dependent. The metronomic combination chemotherapy cured one-third of CT26-bearing mice that acquired tumor-specific T cell immunity. The combination therapy decreased Foxp3 and arginase-1 mRNA levels but increased IFN-γ mRNA expression in tumor tissues. The percentages of tumor-infiltrating CD45+ cells, especially Gr-1high CD11b+ MDSCs, were decreased. These results indicate that metronomic chemotherapy with low-dose CP plus GEM is a promising protocol to mitigate totally Treg- and MDSC-mediated immunosuppression and elicit anti-tumor T cell immunity in vivo.  相似文献   
15.
The extracellular domain of human tissue factor (TF, amino acids 1-217) was expressed in Saccharomyces cerevisiae, using the inducible yeast acid phosphatase promoter and the yeast invertase signal sequence to direct its secretion into the culture broth. Two active soluble forms sTF alpha (high molecular weight form) and sTF beta (low molecular weight form) were purified, the yield being approximately 10 and 1 mg/liter of culture supernatant, respectively. sTF alpha had an apparent molecular mass of 150 kDa on SDS-polyacrylamide gel electrophoresis and contained more than 200 residues of mannose/mol of protein. sTF beta had an apparent molecular mass of 37 kDa and contained 22 residues of mannose/mol of protein. N-Glycosidase F treatments of both rTFs reduced the apparent molecular mass to 35 kDa. The amino-terminal sequences and amino acid compositions of sTF alpha and sTF beta were consistent with those deduced from the cDNA sequence, thereby indicating that the difference in molecular mass is caused by heterogeneity of oligosaccharide structures. Of these recombinant TFs, sTF beta enhanced factor VIIa-amidolytic activity 40-fold toward the chromogenic substrate and 147-fold toward the fluorogenic substrate, affecting mainly the kcat value. The enhancement was comparable with that of TF purified from human placenta. The TF-mediated enhancement of factor VIIa-amidolytic activity was inhibited by heparin-activated antithrombin III, forming a high molecular weight complex. As treatment of sTF beta with denaturants such as guanidine hydrochloride or urea led to a biphasic loss of the activity, the extracellular domain of TF probably consists of two discrete domains. This expression system provides a significant amount of the extracellular domain of TF so that studies of interactions with factor VII are feasible.  相似文献   
16.
Summary Using histochemical procedures for the detection of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), and cytochrome c oxidase (cytox), we investigated the levels of these enzymes of the energy metabolism in postimplantation rat embryos (9.5–12.5 days of gestation). On day 10.5 of gestation, the neural tube, somites, myocardium, and mesenchyme displayed moderate levels of LDH activity; this activity gradually increased in strength, so that, on day 12.5 of gestation, intense LDH activity was uniformly distributed in these intraembryonic tissues. In contrast to LDH, distinet regional differences in the distribution of SDH and cytox were detected. On day 10.5 of gestation, the myocardium exhibited weak to moderate SDH and cytox activity, and on day 11.5, the myocardial activity of these enzymes had become moderate to intense. However, in all other embryonic tissues, e.g., the neural tube and somites, only weak SDH and cytox activity was present. On day 12.5 of gestation, the myocardium displayed very intense SDH and cytox activity, whereas the mantle layer of the neural tube, the spinal ganglia, and the myotomes exhibited only moderate levels of SDH and cytox activity. In the matrix of the neural tube and mesenchyme, these enzyme activities remained at low levels. At electron microscopy, cytox activity was detectable in the spaces between the inner and outer membranes as well as in the intracristal spaces of mitochondria. In general, cytox activity increased in paralled with the differentiation of mitochondria (i.e., increased mitochondrial numbers and size, and the development of mitochondrial cristae), but when the distribution of the cytox activity was considered in detail, it was found to differ among mitochondria. The relationship between, on the one hand, changes in the enzymatic patterns with a bearing on the energy-yielding metabolism and, on the other hand, cellular differentiation during major organogenesis in rat embryos is discussed.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   
17.
Genotoxic stress exerts biological activity by activating downstream effectors, including the p53 tumor suppressor. p53 regulates cell-cycle checkpoint and induction of apoptosis in response to DNA damage; however, molecular mechanisms responsible for committing to these distinct functions remain to be elucidated. Recent studies demonstrated that phosphorylation of p53 at Ser46 is associated with induction of p53AIP1 expression, resulting in commitment to apoptotic cell death. In this regard, the role for Ser46 kinases in p53-dependent apoptosis has been established; however, the kinases responsible for Ser46 phosphorylation have yet to be identified. Here, we demonstrate that the dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) directly phosphorylates p53 at Ser46. Upon exposure to genotoxic stress, DYRK2 translocates into the nucleus for Ser46 phosphorylation. Consistent with these results, DYRK2 induces p53AIP1 expression and apoptosis in a Ser46 phosphorylation-dependent manner. These findings indicate that DYRK2 regulates p53 to induce apoptosis in response to DNA damage.  相似文献   
18.
ObjectivesMammalian DNA methyltransferases are essential to re‐establish global DNA methylation patterns during implantation, which is critical for transmitting epigenetic information to the next generation. In contrast, the significance of methyl‐CpG binding proteins (MBPs) that bind methylated CpG remains almost unknown at this stage. We previously demonstrated that Zbtb38 (also known as CIBZ)—a zinc finger type of MBP—is required for mouse embryonic stem (ES) cell proliferation by positively regulating Nanog expression. However, the physiological function of Zbtb38 in vivo remains unclear.Materials and MethodsThis study used the Cre‐loxP system to generate conditional Zbtb38 knockout mice. Cell proliferation and apoptosis were studied by immunofluorescence staining. Quantitative real‐time PCR, immunoblotting and immunofluorescence were performed to investigate the molecular mechanisms.ResultsGermline loss of the Zbtb38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. Heterozygous loss of Zbtb38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Although this early lethal phenotype, Zbtb38 is dispensable for ES cell establishment and identity.ConclusionsThese findings indicate that Zbtb38 is essential for early embryonic development via the suppression of Nanog and Sox2 expression.

Heterozygous loss of Zbtb38 leads to aberrant epiblast cell proliferation and apoptosis shortly after implantation. Heterozygous loss of Zbtb38 reduced the expression of Nanog and Sox2 in ICM and epiblast.  相似文献   
19.
During chick liver development, the liver bud arises from the foregut, invaginates into the septum transversum, and elongates along and envelops the ductus venosus. However, the mechanism of liver bud migration is only poorly understood. Here, we demonstrate that a GDNF family ligand involved in neuronal outgrowth and migration, neurturin (NRTN), and its receptor, GFRalpha2, are essential for liver bud migration. In the chick embryo, we found that GFRalpha2 was expressed in the liver bud and that NRTN was expressed in the endothelial cells of the ductus venosus. Inhibition of GFRalpha2 signaling suppressed liver bud elongation along the ductus venous without affecting cell proliferation and apoptosis. Moreover, ectopic expression of NRTN perturbed the directional migration along the ductus venosus, leading to splitting or ectopic branching of the liver. We showed that liver buds selectively migrated toward an NRTN-soaked bead in vitro. These data represent a new model for liver bud migration: NRTN secreted from endothelial cells functions as a chemoattractant to direct the migration of the GFRalpha2-expressing liver bud in early liver development.  相似文献   
20.
Tactile displays provoke tactile sensations by artificially stimulating tactile receptors. While many types of tactile displays have been developed, electrotactile displays that exploit electric stimulation can be designed to be thin, light, flexible and thus, wearable. However, the high voltages required to stimulate tactile receptors and limited varieties of possible sensations pose problems. In our previous work, we developed an electrotactile display using a micro-needle electrode array that can drastically reduce the required voltage by penetrating through the high-impedance stratum corneum painlessly, but displaying various tactile sensations was still a challenge. In this work, we demonstrate presentation of tactile sensation of different roughness to the subjects, which is enabled by the arrangement of the electrodes; the needle electrodes are on the fingertip and the ground electrode is on the fingernail. With this arrangement, the display can stimulate the tactile receptors that are located not only in the shallow regions of the finger but also those in the deep regions. It was experimentally revealed that the required voltage was further reduced compared to previous devices and that the roughness presented by the display was controlled by the pulse frequency and the switching time, or the stimulation flow rate. The proposed electrotactile display is readily applicable as a new wearable haptic device for advanced information communication technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号