首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   27篇
  334篇
  2023年   5篇
  2022年   9篇
  2021年   16篇
  2020年   11篇
  2019年   12篇
  2018年   19篇
  2017年   9篇
  2016年   12篇
  2015年   23篇
  2014年   12篇
  2013年   32篇
  2012年   22篇
  2011年   22篇
  2010年   16篇
  2009年   19篇
  2008年   13篇
  2007年   7篇
  2006年   11篇
  2005年   11篇
  2004年   8篇
  2003年   9篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有334条查询结果,搜索用时 14 毫秒
81.
Recent pan-genome studies have revealed an abundance of DNA sequences in human genomes that are not present in the reference genome. A lion’s share of these non-reference sequences (NRSs) cannot be reliably assembled or placed on the reference genome. Improvements in long-read and synthetic long-read (aka linked-read) technologies have great potential for the characterization of NRSs. While synthetic long reads require less input DNA than long-read datasets, they are algorithmically more challenging to use. Except for computationally expensive whole-genome assembly methods, there is no synthetic long-read method for NRS detection. We propose a novel integrated alignment-based and local assembly-based algorithm, Novel-X, that uses the barcode information encoded in synthetic long reads to improve the detection of such events without a whole-genome de novo assembly. Our evaluations demonstrate that Novel-X finds many non-reference sequences that cannot be found by state-of-the-art short-read methods. We applied Novel-X to a diverse set of 68 samples from the Polaris HiSeq 4000 PGx cohort. Novel-X discovered 16 691 NRS insertions of size > 300 bp (total length 18.2 Mb). Many of them are population specific or may have a functional impact.  相似文献   
82.
Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)-1 and -2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin alpha6beta4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton.  相似文献   
83.
Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in "slow" muscles such as soleus, as well as in "fast" muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation.  相似文献   
84.
Nontuberculous mycobacteria are innately resistant to most antibiotics, although the mechanisms responsible for their drug resistance remain poorly understood. They are particularly refractory to thiacetazone (TAC), a second‐line antitubercular drug. Herein, we identified MSMEG_6754 as essential for the innate resistance of Mycobacterium smegmatis to TAC. Transposon‐mediated and targeted disruption of MSMEG_6754 resulted in hypersusceptibility to TAC. Conversely, introduction of MSMEG_6754 into Mycobacterium tuberculosis increased resistance 100‐fold. Resolution of the crystal structure of MSMEG_6754 revealed a homodimer in which each monomer comprises two hot‐dog domains characteristic of dehydratase‐like proteins and very similar to the HadAB complex involved in mycolic acid biosynthesis. Gene inactivation of the essential hadB dehydratase could be achieved in M. smegmatis and M. tuberculosis only when the strains carried an integrated copy of MSMEG_6754, supporting the idea that MSMEG_6754 and HadB share redundant dehydratase activity. Using M. smegmatis‐Acanthamoeba co‐cultures, we found that intra‐amoebal growth of the MSMEG_6754 deleted strain was significantly reduced compared with the parental strain. This in vivo growth defect was fully restored upon complementation with catalytically active MSMEG_6754 or HadABC, indicating that MSMEG_6754 plays a critical role in the survival of M. smegmatis within the environmental host.  相似文献   
85.
Genome-scale metabolic model of Helicobacter pylori 26695   总被引:6,自引:0,他引:6       下载免费PDF全文
A genome-scale metabolic model of Helicobacter pylori 26695 was constructed from genome sequence annotation, biochemical, and physiological data. This represents an in silico model largely derived from genomic information for an organism for which there is substantially less biochemical information available relative to previously modeled organisms such as Escherichia coli. The reconstructed metabolic network contains 388 enzymatic and transport reactions and accounts for 291 open reading frames. Within the paradigm of constraint-based modeling, extreme-pathway analysis and flux balance analysis were used to explore the metabolic capabilities of the in silico model. General network properties were analyzed and compared to similar results previously generated for Haemophilus influenzae. A minimal medium required by the model to generate required biomass constituents was calculated, indicating the requirement of eight amino acids, six of which correspond to essential human amino acids. In addition a list of potential substrates capable of fulfilling the bulk carbon requirements of H. pylori were identified. A deletion study was performed wherein reactions and associated genes in central metabolism were deleted and their effects were simulated under a variety of substrate availability conditions, yielding a number of reactions that are deemed essential. Deletion results were compared to recently published in vitro essentiality determinations for 17 genes. The in silico model accurately predicted 10 of 17 deletion cases, with partial support for additional cases. Collectively, the results presented herein suggest an effective strategy of combining in silico modeling with experimental technologies to enhance biological discovery for less characterized organisms and their genomes.  相似文献   
86.
87.
High-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome. At low PI, the flow in the dome is similar to a driven cavity flow and is characterized by a quasi-stationary shear layer that delineates the parent artery flow from the recirculating flow within the dome. At high PI, on the other hand, the flow is dominated by vortex ring formation, transport across the neck, and impingement and breakdown at the distal wall of the aneurysm dome. We further show that the spatial and temporal characteristics of the wall shear stress field on the aneurysm dome are strongly correlated with the vortex dynamics across the neck. We finally argue that the ratio between the characteristic time scale of transport by the mean flow across the neck and the time scale of vortex ring formation can be used to predict for a given sidewall aneurysm model the critical value of the waveform PI for which the hemodynamics will transition from the cavity mode to the vortex ring mode.  相似文献   
88.
CD4 is a co-receptor for binding of T cells to antigen-presenting cells and the primary receptor for the human immunodeficiency virus type 1 (HIV). CD4 exists in three different forms on the cell surface defined by the state of the domain 2 cysteine residues: an oxidized monomer, a reduced monomer, and a covalent dimer linked through the domain 2 cysteines. The disulfide-linked dimer is the preferred immune co-receptor. The form of CD4 that is preferred by HIV was examined in this study. HIV entry and envelope-mediated cell-cell fusion were tested using cells expressing comparable levels of wild-type or disulfide bond mutant CD4 in which the domain 2 cysteines were mutated to alanine. Eliminating the domain 2 disulfide bond increased entry of HIV reporter viruses and enhanced HIV envelope-mediated cell-cell fusion 2-4-fold. These observations suggest that HIV enters susceptible cells preferably through monomeric reduced CD4, whereas dimeric CD4 is the preferred receptor for binding to antigen-presenting cells. Cleavage of the domain 2 disulfide bond is possibly involved in the conformational change in CD4 associated with fusion of the HIV and cell membranes.  相似文献   
89.
Age and sex need to be considered in the establishment of reference intervals (RIs), especially in early life when there are dynamic physiological changes. Since data for important biomarkers in healthy neonates and infants are limited, particularly in Iranian populations, we have determined age-specific RIs for 7 laboratory biochemical parameters. This cross-sectional study comprised a total of 344 paediatric participants (males: 158, females: 186) between the ages of 3 days and 30 months (mean age: 12.91 ± 7.15 months). Serum levels of creatinine, urea, uric acid, calcium, phosphate, vitamin D and high-sensitivity C-reactive protein (hs-CRP) were measured using an Alpha classic-AT plus auto-analyser. We determined age-specific RIs using CLSI Ep28-A3 and C28-A3 guidelines. No sex partitioning was required for any of the biomarkers. Age partitioning was required for kidney function tests and phosphate. The serum concentration of urea and creatinine increased with age, while phosphate and uric acid decreased with age. Age partitioning was not required for serum calcium, vitamin D, and hs-CRP, which remained relatively constant throughout the age range. Age-specific RIs for 7 routine biochemical markers were determined to address critical gaps in RIs in early life to help improve clinical interpretation of blood test results in young children, including neonates. Established age partitions demonstrate the biochemical changes that take place during child growth and development. These novel data will ultimately better disease management in the Iranian paediatric population and can be of value to clinical and hospital laboratories with similar populations.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号