首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5914篇
  免费   357篇
  国内免费   10篇
  2023年   83篇
  2022年   191篇
  2021年   287篇
  2020年   158篇
  2019年   196篇
  2018年   224篇
  2017年   158篇
  2016年   245篇
  2015年   293篇
  2014年   314篇
  2013年   466篇
  2012年   400篇
  2011年   443篇
  2010年   243篇
  2009年   229篇
  2008年   245篇
  2007年   248篇
  2006年   218篇
  2005年   195篇
  2004年   191篇
  2003年   160篇
  2002年   157篇
  2001年   91篇
  2000年   61篇
  1999年   60篇
  1998年   46篇
  1997年   41篇
  1996年   26篇
  1995年   27篇
  1994年   31篇
  1993年   24篇
  1992年   33篇
  1991年   33篇
  1990年   22篇
  1989年   21篇
  1988年   39篇
  1987年   19篇
  1986年   29篇
  1985年   31篇
  1984年   18篇
  1983年   19篇
  1982年   18篇
  1981年   17篇
  1980年   17篇
  1979年   22篇
  1978年   16篇
  1977年   19篇
  1976年   19篇
  1974年   15篇
  1973年   20篇
排序方式: 共有6281条查询结果,搜索用时 156 毫秒
991.
According to our analysis of literature sources on the family Hydraenidae (Coleoptera: Staphylinoidea) of Iran, it is represented by 67 species and three genera: Hydraena Kugelann, 1794 (21 species), Limnebius Leach, 1815 (six species) and Ochthebius Leach, 1815 (40 species). Twenty-two species are supposed to be endemic to Iran. Here, for the first time, we summarize species distribution data in Iranian provinces and present them in a checklist of Iranian Hydraenidae. We also present two additional species lists: one with incorrect records (one species and one subspecies) and the other with unidentified species.  相似文献   
992.
A new compound based on the D-π-A concept, where D = dimethylamino-phenyl and A = naphthoic acid, separated by an imine motif, was designed, synthesized and characterized. The spectral, energetics, and structural characteristics of the compound were studied thoroughly theoretically by density functional theory (DFT) in the gas and aqueous phases and experimentally (steady-state absorption) in aqueous media with various degrees of polarity and hydrogen bonding ability. This compound shows high sensitivity to the polarity, basicity and proton affinity of the environment. Based on DFT, TD-DFT and NBO analysis, the compound exists in the ground-state with both intermolecular and intramolecular hydrogen bond conformations in association with the –COOH, with latter isomer calculated to be more stable. Furthermore, structural changes via intermolecular solute–solvent interactions, dictate electronic modifications and spectral changes.
Graphical abstract Acidic and basic sites in DMAMN involved in protonation/deprotonation
  相似文献   
993.
Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti‐melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC50 7.895 ± 0.24 μm ) against tyrosinase as compared to the standard drug kojic acid (IC50 16.84 ± 0.64 μm ) and kinetic analyses showed that ACZ is a non‐competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l ‐DOPA. Western blot results showed that ACZ significantly (< 0.05) decreased the expression level of tyrosinase at 40 μm . Zebrafish embryos were treated with 10, 20 or 40 μm of ACZ and of positive control kojic acid. At 72 h of treatment with ACZ and kojic acid, ACZ significantly (< 0.001) decreased the embryos pigmentation to 40.8% of untreated embryos at the dose of 40 μm of ACZ while kojic acid decreased only 25.0% of pigmentation at the same dose of kojic acid. In silico docking were performed against tyrosinase using PyRx tool. Docking studies suggested that His244, Asn260 and His85 are the major interacting residues in the binding site of the protein. In conclusion, our results suggest that ACZ is a good candidate for the inhibition of melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening.  相似文献   
994.
Inflammatory bowel disease (IBD) is the main risk factor for developing colorectal cancer which is common in patients of all ages. 5‐Aminosalicylic acid (5‐ASA), structurally related to the salicylates, is highly active in the treatment of IBD with minor side effects. In this study, the synthesis of galactose and fructose esters of 5‐ASA was planned to evaluate the role of glycoconjugation on the bioactivity of the parent drug. The antibacterial activity of the new compounds were evaluated against two Gram‐negative and two Gram‐positive species of bacteria, with a notable effect observed against Staphylococcus aureus and Escherichia coli in comparisons with the 5‐ASA. Cytotoxicity testing over HT‐29 and 3T3 cell lines indicated that the toxicity of the new products against normal cells was significantly reduced compared with the original drug, whereas their activity against cancerous cells was slightly decreased. The anti‐inflammatory activity test in RAW264.7 macrophage cells indicated that the inhibition of nitric oxide by both of the monosaccharide conjugated derivatives was slightly improved in comparison with the non‐conjugated drug.  相似文献   
995.
This paper presents a fully enclosed duck‐shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low‐frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck‐shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m?2. Following the design, a fluid–solid interaction analysis is carried out on one duck‐shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck‐shaped TENG shows a simple, cost‐effective, environmentally friendly, light‐weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.  相似文献   
996.
Inflammation is the body’s attempt at self-protection to remove harmful stimuli, including damaged cells, irritants, or pathogens and begin the healing process. In this study, strain-induced inflammation in pulmonary alveolar tissue under high tidal volume is investigated through a combination of an inflammation model and fluid structure interaction (FSI) analysis. A realistic three-dimensional organ model for alveolar sacs is built, and FSI is employed to evaluate strain distribution in alveolar tissue for different tidal volume (TV) values under the mechanical ventilation (MV) condition. The alveolar tissue is treated as a hyperelastic solid and provides the environment for the tissue constituents. The influence of different strain distributions resulting from different tidal volumes is investigated. It is observed that strain is highly distributed in the inlet area. In addition, strain versus time curves in different locations through the alveolar model reveals that middle layers in the alveolar region would undergo higher levels of strain during breathing under the MV condition. Three different types of strain distributions in the alveolar region from the FSI simulation are transferred to the CA model to study population dynamics of cell constituents under MV for different TVs; 200, 500 and 1000 mL, respectively. The CA model results suggests that strain distribution plays a significant role in population dynamics. An interplay between strain magnitude and distribution appears to influence healing capability. Results suggest that increasing TV leads to an exponential rise in tissue damage by inflammation.  相似文献   
997.
Meningioma is the most frequent primary central nervous system tumor. The risk of recurrence and the prognosis are correlated with the extent of the resection that ideally encompasses the infiltrated dura mater and, if required, the infiltrated bone. No device can deliver real‐time intraoperative histopathological information on the tumor environment to help the neurosurgeon to achieve a gross total removal. This study assessed the abilities of nonlinear microscopy to provide relevant and real‐time data to help resection of meningiomas. Nine human meningioma samples (four World Health Organization Grade I, five Grade II) were analyzed using different optical modalities: spectral analysis and imaging, lifetime measurements, fluorescence lifetime imaging microscopy, fluorescence emitted under one‐ and two‐photon excitation and the second‐harmonic generation signal imaging using a multimodal setup. Nonlinear microscopy produced images close to histopathology as a gold standard. The second‐harmonic generation signal delineated the collagen background and two‐photon fluorescence underlined cell cytoplasm. The matching between fluorescence images and Hematoxylin and Eosin staining was possible in all cases. Grade I meningioma emitted less autofluorescence than Grade II meningioma and Grade II meningioma exhibited a distinct lifetime value. Autofluorescence was correlated with the proliferation rates and seemed to explain the observed differences between Grade I and II meningiomas. This preliminary multimodal study focused on human meningioma samples confirms the potential of tissue autofluorescence analysis and nonlinear microscopy in helping intraoperatively neurosurgeons to reach the actual boundaries of the tumor infiltration.

Correspondence between H&E staining (top pictures) and the two‐photon fluorescence imaging (bottom pictures)  相似文献   

998.
999.
The demands for applicable tissue-engineered scaffolds that can be used to repair load-bearing segmental bone defects (SBDs) is vital and in increasing demand. In this study, seven different combinations of 3 dimensional (3D) novel nanocomposite porous structured scaffolds were fabricated to rebuild SBDs using an extraordinary blend of cockle shells (CaCo3) nanoparticles (CCN), gelatin, dextran and dextrin to structure an ideal bone scaffold with adequate degradation rate using the Freeze Drying Method (FDM) and labeled as 5211, 5400, 6211, 6300, 7101, 7200 and 8100. The micron sized cockle shells powder obtained (75 µm) was made into nanoparticles using mechano-chemical, top-down method of nanoparticles synthesis with the presence of the surfactant BS-12 (dodecyl dimethyl bataine). The phase purity and crystallographic structures, the chemical functionality and the thermal characterization of the scaffolds’ powder were recognized using X-Ray Diffractometer (XRD), Fourier transform infrared (FTIR) spectrophotometer and Differential Scanning Calorimetry (DSC) respectively. Characterizations of the scaffolds were assessed by Scanning Electron Microscopy (SEM), Degradation Manner, Water Absorption Test, Swelling Test, Mechanical Test and Porosity Test. Top-down method produced cockle shell nanoparticles having averagely range 37.8±3–55.2±9 nm in size, which were determined using Transmission Electron Microscope (TEM). A mainly aragonite form of calcium carbonate was identified in both XRD and FTIR for all scaffolds, while the melting (Tm) and transition (Tg) temperatures were identified using DSC with the range of Tm 62.4–75.5 °C and of Tg 230.6–232.5 °C. The newly prepared scaffolds were with the following characteristics: (i) good biocompatibility and biodegradability, (ii) appropriate surface chemistry and (iii) highly porous, with interconnected pore network. Engineering analyses showed that scaffold 5211 possessed 3D interconnected homogenous porous structure with a porosity of about 49%, pore sizes ranging from 8.97 to 337 µm, mechanical strength 20.3 MPa, Young's Modulus 271±63 MPa and enzymatic degradation rate 22.7 within 14 days.  相似文献   
1000.
New strategies in vaccine development are urgently needed to combat emerging influenza viruses and to reduce the risk of pandemic disease surfacing. Being conserved, the M2 e protein, is a potential candidate for universal vaccine development against influenza A viruses. Mycobacterium tuberculosis Hsp70(mHsp70) is known to cultivate the function of immunogenic antigen-presenting cells, stimulate a strong cytotoxic T lymphocyte(CTL) response, and stop the induction of tolerance. Thus, in this study, a recombinant protein from the extracellular domain of influenza A virus matrix protein 2(M2e), was fused to the C-terminus of Mycobacterium tuberculosis Hsp70(Hsp70c), to generate a vaccine candidate. Humoral immune responses, IFN-γ-producing lymphocyte, and strong CTL activity were all induced to confirm the immunogenicity of M2 e.Hsp70c(Hsp70359–610). And challenge tests showed protection against H1N1 and H9N2 strains in vaccinated groups. Finally these results demonstrates M2 e.Hsp70c fusion protein can be a candidate for a universal influenza A vaccine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号