首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   29篇
  341篇
  2023年   5篇
  2022年   9篇
  2021年   18篇
  2020年   12篇
  2019年   12篇
  2018年   19篇
  2017年   9篇
  2016年   12篇
  2015年   23篇
  2014年   16篇
  2013年   36篇
  2012年   23篇
  2011年   22篇
  2010年   16篇
  2009年   19篇
  2008年   13篇
  2007年   7篇
  2006年   10篇
  2005年   11篇
  2004年   8篇
  2003年   9篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1975年   1篇
排序方式: 共有341条查询结果,搜索用时 0 毫秒
301.
The hypothesis that glucose deprivation-induced cytotoxicity in transformed human cells is mediated by mitochondrial O2*- and H2O2 was first tested by exposing glucose-deprived SV40-transformed human fibroblasts (GM00637G) to electron transport chain blockers (ETCBs) known to increase mitochondrial O2*- and H2O2 production (antimycin A (AntA), myxothiazol (Myx), or rotenone (Rot)). Glucose deprivation (2-8 h) in the presence of ETCBs enhanced parameters indicative of oxidative stress (i.e. GSSG and steady-state levels of oxygen-centered radicals) as well as cytotoxicity. Glucose deprivation in the presence of AntA also significantly enhanced cytotoxicity and parameters indicative of oxidative stress in several different human cancer cell lines (PC-3, DU145, MDA-MB231, and HT-29). In addition, human osteosarcoma cells lacking functional mitochondrial electron transport chains (rho0) were resistant to glucose deprivation-induced cytotoxicity and oxidative stress in the presence of AntA. In the absence of ETCBs, aminotriazole-mediated inactivation of catalase in PC-3 cells demonstrated increases in intracellular steady-state levels of H2O2 during glucose deprivation. Finally, in the absence of ETCBs, overexpression of manganese containing superoxide dismutase and/or mitochondrial targeted catalase using adenoviral vectors significantly protected PC-3 cells from toxicity and oxidative stress induced by glucose deprivation with expression of both enzymes providing greater protection than was seen with either alone. Overall, these findings strongly support the hypothesis that mitochondrial O2*- and H2O2 significantly contribute to glucose deprivation-induced cytotoxicity and metabolic oxidative stress in human cancer cells.  相似文献   
302.
Contact sites between the corticotropin-releasing factor receptor type 1 (CRFR1), the sauvagine (SVG) radioligands [Tyr(0),Gln(1)]SVG ((125)I-YQS) and [Tyr(0),Gln(1), Leu(17)]SVG ((125)I-YQLS) were examined. (125)I-YQLS or (125)I-YQS was cross-linked to CRFR1 using the chemical cross-linker, disuccinimidyl suberate (DSS), which cross-links the epsilon amino groups of lysine residues that have a molecular distance of 11.4 A. DSS specifically and efficiently cross-linked (125)I-YQLS and (125)I-YQS to CRFR1. CRFR1 contains 5 putative extracellular lysine residues (Lys(110), Lys(111), Lys(113), Lys(257), and Lys(262)) that can cross-link to the 4 lysine residues (Lys(16), Lys(22), Lys(25), and Lys(27)) of the radioligands. Identification of the CNBr-cleaved fragments of CRFR1 cross-linked to (125)I-YQLS or (125)I-YQS established that the second extracellular loop of CRFR1 cross-links to Lys(16) of YQS. Additionally, site-directed mutagenesis (changing Lys to Arg in CRFR1 individually and in combination) revealed that Lys(257) in the second extracellular loop of CRFR1 is an important cross-linking site. In conclusion, it was shown that in SVG-bound CRFR1, Lys(257) of CRFR1 lies in close proximity (11.4 A) to Lys(16) of SVG.  相似文献   
303.
BACKGROUND: Interleukin-1 (IL-1), an inflammatory cytokine whose levels are elevated in inflamed mucosa, causes part of its effect on intestinal epithelial cells (IEC) through inducing ceramide production. AIM: To study the role of nuclear factor-kappaB (NF-kappaB), a pro-inflammatory and anti-apoptotic factor, in IL-1-treated IEC. METHODS: NF-kappaB activity and levels of apoptotic proteins were assessed by electrophoretic mobility shift assay and RNA-protection assay, respectively. RESULTS: IL-1 and ceramide, which have been shown to partially mediate IL-1 effects on IEC, activated NF-kappaB levels significantly. This activation was due to a decrease in IkappaB-alpha and IkappaB-beta protein levels. Moreover, the ratio of mRNA levels of anti-apoptotic to pro-apoptotic proteins was significantly increased in IL-1-treated IEC. CONCLUSION: NF-kappaB may play a key role in the regulation of the expression of pro-inflammatory and/or apoptotic genes in inflammatory bowel disease, making this protein an attractive target for therapeutic intervention.  相似文献   
304.
305.
A large-scale in silico evaluation of gene deletions in Saccharomyces cerevisiae was conducted using a genome-scale reconstructed metabolic model. The effect of 599 single gene deletions on cell viability was simulated in silico and compared to published experimental results. In 526 cases (87.8%), the in silico results were in agreement with experimental observations when growth on synthetic complete medium was simulated. Viable phenotypes were correctly predicted in 89.4% (496 out of 555) and lethal phenotypes were correctly predicted in 68.2% (30 out of 44) of the cases considered. The in silico evaluation was solely based on the topological properties of the metabolic network which is based on well-established reaction stoichiometry. No interaction or regulatory information was accounted for in the in silico model. False predictions were analyzed on a case-by-case basis for four possible inadequacies of the in silico model: (1) incomplete media composition, (2) substitutable biomass components, (3) incomplete biochemical information, and (4) missing regulation. This analysis eliminated a number of false predictions and suggested a number of experimentally testable hypotheses. A genome-scale in silico model can thus be used to systematically reconcile existing data and fill in our knowledge gaps about an organism.  相似文献   
306.
BACKGROUND: In inflammatory bowel disease (IBD), cytokine levels (such as interleukin-1 (IL-1)) are elevated. We have shown previously that IL-1 activates phospholipid signaling pathways in intestinal epithelial cells (EEC), leading to increased ceramide levels. AIM: To determine whether ceramide induces apoptosis in IEC. METHODS: Apoptosis was evaluated by annexin-V binding or Hoechst nuclear staining. Levels of bcl-2, bcl-x, bax, p53 and p21 were determined by Western blotting, and celi cycle analysis was determined by flow cytometry. RESULTS: IL-1 increased ceramide accumulation in a time-dependent and concentration-dependent manner with a peak response at 4 h, with [IL-1] = 30 ng/ml. Neither IL-1 nor ceramide induced apoptosis in EEC, but they increased bcl-2 levels and decreased bax and p21 levels without affecting bcl-x and p53 levels. They also caused a slight but significant increase in the G2/M phase. These data suggest a role for ceramide in IBD and suggest a possible mechanism for the enhanced tumorigenic activity in IBD patients.  相似文献   
307.
Emerging evidence suggests that Ca2+ release evoked by certain G-protein-coupled receptors can be voltage-dependent; however, the relative contribution of different components of the signaling cascade to this response remains unclear. Using the electrically inexcitable megakaryocyte as a model system, we demonstrate that inositol 1,4,5-trisphosphate-dependent Ca2+ mobilization stimulated by several agonists acting via Galphaq-coupled receptors is potentiated by depolarization and that this effect is most pronounced for ADP. Voltage-dependent Ca2+ release was not induced by direct elevation of inositol 1,4,5-trisphosphate, by agents mimicking diacylglycerol actions, or by activation of phospholipase Cgamma-coupled receptors. The response to voltage did not require voltage-gated Ca2+ channels as it persisted in the presence of nifedipine and was only weakly affected by the holding potential. Strong predepolarizations failed to affect the voltage-dependent Ca2+ increase; thus, an alteration of G-protein betagamma subunit binding is also not involved. Megakaryocytes from P2Y1(-/-) mice lacked voltage-dependent Ca2+ release during the application of ADP but retained this response after stimulation of other Galphaq-coupled receptors. Although depolarization enhanced Ca2+ mobilization resulting from GTPgammaS dialysis and to a lesser extent during AlF4- or thimerosal, these effects all required the presence of P2Y1 receptors. Taken together, the voltage dependence to Ca2+ release via Galphaq-coupled receptors is not due to control of G-proteins or down-stream signals but, rather, can be explained by a voltage sensitivity at the level of the receptor itself. This effect, which is particularly robust for P2Y1 receptors, has wide-spread implications for cell signaling.  相似文献   
308.
309.
The emerging fields of tissue engineering and biomaterials have begun to provide potential treatment options for liver failure. The goal of the present study is to investigate the ability of a poly L-lactic acid (PLLA) nanofiber scaffold to support and enhance hepatic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). A scaffold composed of poly L-lactic acid and collagen was fabricated by the electrospinning technique. After characterizing isolated hMSCs, they were seeded onto PLLA nanofiber scaffolds and induced to differentiate into a hepatocyte lineage. The mRNA levels and protein expression of several important hepatic genes were determined using RT-PCR, immunocytochemistry and ELISA. Flow cytometry revealed that the isolated bone marrow-derived stem cells were positive for hMSC-specific markers CD73, CD44, CD105 and CD166 and negative for hematopoietic markers CD34 and CD45. The differentiation of these stem cells into adipocytes and osteoblasts demonstrated their multipotency. Scanning electron microscopy showed adherence of cells in the nanofiber scaffold during differentiation towards hepatocytes. Our results showed that expression levels of liver-specific markers such as albumin, α-fetoprotein, and cytokeratins 8 and 18 were higher in differentiated cells on the nanofibers than when cultured on plates. Importantly, liver functioning serum proteins, albumin and α-1 antitrypsin were secreted into the culture medium at higher levels by the differentiated cells on the nanofibers than on the plates, demonstrating that our nanofibrous scaffolds promoted and enhanced hepatic differentiation under our culture conditions. Our results show that the engineered PLLA nanofibrous scaffold is a conducive matrix for the differentiation of MSCs into functional hepatocyte-like cells. This represents the first step for the use of this nanofibrous scaffold for culture and differentiation of stem cells that may be employed for tissue engineering and cell-based therapy applications.  相似文献   
310.
The finite element (FE) method can accurately calculate tissue deformation. However, its low speed renders it ineffective for many biomedical applications involving real-time data processing. To accelerate FE analysis, we introduce a novel tissue mechanics simulation technique. This technique is suitable for real-time estimation of tissue deformation of specific organs, which is required in computer-aided diagnostic or therapeutic procedures. In this method, principal component analysis is used to describe each organ shape and its corresponding FE field for a pool of patients by a small number of weight factors. A mapping function is developed to relate the parameters of organ shape to their FE field counterpart. We show that irrespective of the complexity of the tissue's constitutive law or its loading conditions, the proposed technique is highly accurate and fast in estimating the FE field. Average deformation errors of less than 2% demonstrate the accuracy of the proposed technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号