首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   3篇
  181篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   5篇
  2014年   12篇
  2013年   9篇
  2012年   13篇
  2011年   14篇
  2010年   13篇
  2009年   6篇
  2008年   11篇
  2007年   9篇
  2006年   9篇
  2005年   10篇
  2004年   13篇
  2003年   10篇
  2002年   7篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1983年   1篇
排序方式: 共有181条查询结果,搜索用时 0 毫秒
91.
Traditionally, phenotype-driven forward genetic plant mutant studies have been among the most successful approaches to revealing the roles of genes and their products and elucidating biochemical, developmental, and signaling pathways. A limitation is that it is time consuming, and sometimes technically challenging, to discover the gene responsible for a phenotype by map-based cloning or discovery of the insertion element. Reverse genetics is also an excellent way to associate genes with phenotypes, although an absence of detectable phenotypes often results when screening a small number of mutants with a limited range of phenotypic assays. The Arabidopsis Chloroplast 2010 Project (www.plastid.msu.edu) seeks synergy between forward and reverse genetics by screening thousands of sequence-indexed Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutants for a diverse set of phenotypes. Results from this project are discussed that highlight the strengths and limitations of the approach. We describe the discovery of altered fatty acid desaturation phenotypes associated with mutants of At1g10310, previously described as a pterin aldehyde reductase in folate metabolism. Data are presented to show that growth, fatty acid, and chlorophyll fluorescence defects previously associated with antisense inhibition of synthesis of the family of acyl carrier proteins can be attributed to a single gene insertion in Acyl Carrier Protein4 (At4g25050). A variety of cautionary examples associated with the use of sequence-indexed T-DNA mutants are described, including the need to genotype all lines chosen for analysis (even when they number in the thousands) and the presence of tagged and untagged secondary mutations that can lead to the observed phenotypes.Decoding of the Arabidopsis (Arabidopsis thaliana) genome sequence earlier this decade (Arabidopsis Genome Initiative, 2000) provided the opportunity to determine the functions of approximately 27,000 protein-coding genes. One or more functions of a small percentage of genes are currently experimentally determined, typically from mutant or transgenic analysis or through biochemistry. However, roles for the vast majority of plant genes are either more or less accurately predicted by DNA sequence homology or unpredictable based upon DNA sequence (Arabidopsis Genome Initiative, 2000; Cho and Walbot, 2001; Rhee et al., 2008; for recent specific examples, see Gao et al., 2009; Schilmiller et al., 2009). Because of the uncertainty associated with homology-based function assessment, high-throughput approaches to gene function identification are needed to expand the universe of genes with experimental annotation.In contrast to organisms amenable to targeted gene replacement, such as bacteria, yeast, and mouse (Wendland, 2003; Wu et al., 2007; Adams and van der Weyden, 2008), obtaining a gene knockout is not as efficient in flowering plants. In Arabidopsis, the conventional way of creating a gene knockout is by insertional mutagenesis via Agrobacterium tumefaciens-mediated transformation (Krysan et al., 1999). Using this technique, a large piece of T-DNA is inserted into the genome in an untargeted manner (Alonso et al., 2003). If it lands within a coding or regulatory region, the T-DNA can influence the expression of the corresponding gene. While the probability of any single insertion element causing a mutation in a gene of interest is low, sequencing of hundreds of thousands of independent insertion sites has led to a collection of mutants in the majority of genes (http://signal.SALK.edu/tabout.html; Alonso et al., 2003).T-DNA mutants can be a valuable tool for forward genetics, in which hundreds or thousands of mutants are subjected to phenotypic assays (Feldmann, 1991; Kuromori et al., 2006), but reverse genetics is the most common way in which these mutant collections are utilized. Typically, a small number of candidate genes are tested for a role in a particular biological process by reducing or increasing gene expression and assaying one or more phenotypes (for review, see Page and Grossniklaus, 2002; Alonso and Ecker, 2006). The availability of a gene-indexed T-DNA mutant collection allows researchers to rapidly obtain mutant lines for their genes of interest (http://signal.SALK.edu/cgi-bin/tdnaexpress). The availability of a large collection of indexed mutant or RNA interference lines in other model organisms has facilitated large-scale reverse genetics studies (Piano et al., 2000; Giaever et al., 2002; Ho et al., 2009).In the course of a large reverse genetics project (The Chloroplast 2010 Project; http://www.plastid.msu.edu/), more than 3,500 T-DNA lines harboring insertions in nuclear genes, most of which were computationally predicted to encode chloroplast-targeted proteins, were subjected to a diverse set of phenotypic screens (Lu et al., 2008). In total, 85 phenotypic observations ranging from quantitative metabolite measurements to qualitative phenotypic observations are collected for each mutant line, and the data are stored in a relational database (http://bioinfo.bch.msu.edu/2010_LIMS). This approach seeks to take advantage of the best features of forward and reverse genetics by screening a large number of lines with mutations in known genes. Unlike conventional genetics screens, where plants are assayed for one or a small number of traits, this project surveys varied phenotypes.In this study, a variety of phenotypic variants were analyzed. In some cases, independent mutants of the same gene were found to have similar phenotypes, revealing new information about those genes. In other examples, a single homozygous mutant allele was found to have a detectable phenotype. These run the gamut from cases where secondary mutations are strongly implicated in causing the phenotype, to an example where an analogous maize (Zea mays) mutant is known to have a similar phenotype, to other instances where the causative mutation is yet to be identified. In several examples of secondary mutations, the phenotype was not due to a T-DNA insertion, reinforcing the idea that these untagged alleles are a cause for concern in conducting large-scale reverse genetics screens (Vitha et al., 2003; Adham et al., 2005; Zolman et al., 2008), while providing opportunities for gene function discovery by map-based cloning or whole genome sequence analysis.  相似文献   
92.
Spot blotch (SB) caused by Cochliobolus sativus has been the major yield‐reducing factor for barley production during the last decade. In this study, the correlation between aggressiveness and in vitro xylanase production of 29 isolates of C. sativus was investigated. Isolate aggressiveness was evaluated in term of lesion form in barley leaves. Additionally, the isolates were compared for their ability to produce in vitro significant levels of xylanase activities when grown in a liquid medium. Aggressive isolates released more xylanase of weakly aggressive isolates. Correlation tests analysis revealed a significant relationship (r = 0.84, r = 0.50; P < 0.01) between the xylanase (per unit fungal mass) and aggressiveness on the two barley cultivars Arabi Abiad and Bowman, respectively. Correlation between the production of this enzyme and the origin of the isolates was not found. The results indicate that the production of xylanase influences the aggressiveness of the isolates of C. sativus towards barley seedlings.  相似文献   
93.
94.
Damaj MI  Zheng J  Martin BR  Kuhar MJ 《Peptides》2006,27(8):2019-2023
CART peptides are found in brain and spinal cord areas involved in pain transmission. In the present study, we investigated the role of rat CART (55-102) in the modulation of chronic pain using models of chronic neuropathic (nerve injury model) and inflammatory (carrageenan test) pain models in the mouse after intrathecal administration. The results show that CART (55-102) was highly effective in reversing the hyperalgesia and allodynia signs of chronic neuropathic pain in a dose-related manner at doses (0.05-2 microg/mouse) that did not affect motor coordination of the animals. These effects lasted for at least 3 h after injection and were not blocked by naloxone, an opiate antagonist. Although CART (55-102) attenuated carrageenan-induced hyperalgesia, it failed to reduce the inflammation associated with this model. These results suggest the involvement of the CART peptides in the development of hyperalgesia and allodynia associated with neuropathic pain.  相似文献   
95.
96.
Apoptosis is a key phenomenon in the regulation of the life span of odontoblasts, which are responsible for dentin matrix production of the teeth. The mechanism controlling odontoblasts loss in developing, normal, and injured human teeth is largely unknown. A possible correlation between apoptosis and dental pulp volume reduction was examined. Histomorphometric analysis was performed on intact 10 to 14 year-old premolars to follow dentin deposition and evaluate the total number of odontoblasts. Apoptosis in growing healthy teeth as well as in mature irritated human teeth was determined using a modified TUNEL technique and an anti-caspase-3 antibody. In intact growing teeth, the sequential rearrangement of odontoblasts into a multi-layer structure during tooth crown formation was correlated with an apoptotic wave that leads to the massive elimination of odontoblasts. These data suggest that apoptosis, coincident with dentin deposition changes, plays a role in tooth maturation and homeostasis. Massive apoptotic events were observed after dentin irritation. In carious and injured teeth, apoptosis was detected in cells surrounding the lesion sites, as well as in mono-nucleated cells nearby the injury. These results indicate that apoptosis is a part of the mechanism that regulate human dental pulp chamber remodeling during tooth development and pathology.  相似文献   
97.
98.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   
99.

Background

Cardiogenic shock complicating ST-elevation myocardial infarction (STEMI) is associated with significant morbidity and mortality. In the primary percutaneous coronary intervention (PPCI) era, randomized trials have not shown a survival benefit with intra-aortic balloon pump (IABP) therapy. This differs to observational data which show a detrimental effect, potentially reflecting bias and confounding. Without robust and valid risk adjustment, findings from non-randomized studies may remain biased.

Methods

We compared long-term mortality following IABP therapy in patients with cardiogenic shock undergoing PPCI during 2008–2013 from the British Columbia Cardiac Registry. We addressed measured and unmeasured confounding using propensity score and instrumental variable methods.

Results

A total of 12,105 patients with STEMI were treated with PPCI during the study period. Of these, 700 patients (5.8%) had cardiogenic shock. Of the patients with cardiogenic shock, 255 patients (36%) received IABP therapy. Multivariable analyses identified IABP therapy to be associated with increased mortality up to 3 years (HR = 1.67, 95% CI:1.20–2.67, p<0.001). This association was lost in propensity-matched analyses (HR = 1.23, 95% CI: 0.84–1.80, p = 0.288). When addressing measured and unmeasured confounders, instrumental variable analyses demonstrated that IABP therapy was not associated with mortality at 3 years (Δ = 16.7%, 95% CI: -12.7%, 46.1%, p = 0.281). Subgroup analyses demonstrated IABP was associated with increased mortality in non-diabetics; patients not undergoing multivessel intervention; patients without renal disease and patients not having received prior thrombolysis.

Conclusions

In this observational analysis of patients with STEMI and cardiogenic shock, when adjusting for confounding, IABP therapy had a neutral effect with no association with long-term mortality. These findings differ to previously reported observational studies, but are in keeping with randomized trial data.  相似文献   
100.
Glutathione S-transferase was isolated from supernatant of camel kidney homogenate centrifugation at 37, 000 xg by glutathione agarose affinity chromatography. The enzyme preparation has a specific activity of 44 μ;mol/min/mg protein and recovery was more than 85% of the enzyme activity in the crude extract. Glutathione agarose affinity chromatography resulted in a purification factor of about 49 and chromatofocusing resolved the purified enzyme into two major isoenzymes (pI 8.7 and 7.9) and two minor isoenzymes (pI 8.3 and 6.9). The homogeneity of the purified enzyme was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration on Sephadex G-100.

The different isoenzymes were composed of a binary combination of two subunits with molecular weight of 29, 000 D and 26, 000 D to give a native molecular weight of 55, 000 D.

The substrate specificities of the major camel kidney glutathione S-transferase isoenzymes were determined towards a range of substrates. l-chloro-2, 4-dinltrobenzene was the preferred substrate for all the isoenzymes. Isoenzyme III (pI 7.9) had higher specific activity for ethacrynic acid and isoenzyme II (pI 8.3) was the only isoenzyme that exhibited peroxidase activity. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the camel kidney enzyme showed fusion of precipitation lines with the enzymes from camel brain, liver and lung and no cross reactivity was observed with enzymes from kidneys of sheep, cow, rat, rabbit and mouse.

Different storage conditions have been found to affect the enzyme activity and the loss in activity was marked at room temperature and upon repeated freezing and thawing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号