首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1165篇
  免费   71篇
  国内免费   1篇
  1237篇
  2024年   2篇
  2023年   4篇
  2022年   10篇
  2021年   24篇
  2020年   14篇
  2019年   17篇
  2018年   33篇
  2017年   22篇
  2016年   36篇
  2015年   60篇
  2014年   78篇
  2013年   80篇
  2012年   85篇
  2011年   85篇
  2010年   47篇
  2009年   55篇
  2008年   63篇
  2007年   83篇
  2006年   45篇
  2005年   51篇
  2004年   55篇
  2003年   48篇
  2002年   37篇
  2001年   28篇
  2000年   31篇
  1999年   22篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1993年   2篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   16篇
  1988年   5篇
  1987年   10篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1973年   2篇
  1971年   3篇
  1970年   1篇
  1965年   2篇
  1934年   1篇
排序方式: 共有1237条查询结果,搜索用时 31 毫秒
41.
Guanidoacetate methyltransferase has been purified about 140-fold from pig liver. Polyacrylamide gel electrophoresis of the purified enzyme showed four protein bands, each of which is associated with guanidoacetate methyltransferase activity. During gel electrophoresis at pH 3 in 8 M urea, guanidoacetate methyltransferase migrated as a single component. The molecular weight of the purified guanidoacetate methyltransferase was estimated to be 31,000 by sodium dodecyl sulfate-gel electrophoresis, which also showed only one protein component with guanidoacetate methyltransferase activity. This molecular weight is in agreement with that estimated by Sephadex G-75 chromatography. Guanidoacetate methyltransferase is inhibited by adenosylhomocysteine, 3-deazaadenosylhomocysteine, and sinefungin with Ki values of 16 microM, 39 microM, and 18 microM, respectively.  相似文献   
42.
Sphingosylphosphorylcholine (SPC) is a bioactive lipid molecule involved in numerous biological processes. Treatment of MS1 pancreatic islet endothelial cells with SPC increased phospholipase D (PLD) activity in a time- and dose-dependent manner. In addition, treatment of the MS1 cells with 10 microM SPC induced stimulation of phospholipase C (PLC) activity and transient elevation of intracellular Ca2+. The SPC-induced PLD activation was prevented by pretreatment of the MS1 cells with a PLC inhibitor, U73122, and an intracellular Ca2+-chelating agent, BAPTA-AM. This suggests that PLC-dependent elevation of intracellular Ca2+ is involved in the SPC-induced activation of PLD. The SPC-dependent PLD activity was also almost completely prevented by pretreatment with pan-specific PKC inhibitors, GF109203X and RO-31-8220, and with a PKCdelta-specific inhibitor, rottlerin, but not by pretreatment with GO6976, a conventional PKC isozymes-specific inhibitor. Adenoviral overexpression of a kinase-deficient mutant of PKCdelta attenuated the SPC-induced PLD activity. These results suggest that PKCdelta plays a crucial role for the SPC-induced PLD activation. The SPC-induced PLD activation was preferentially potentiated in COS-7 cells transfected with PLD2 but not with PLD1, suggesting a specific implication of PLD2 in the SPC-induced PLD activation. SPC treatment induced phosphorylation of PLD2 in COS-7 cells, and overexpression of the kinase-deficient mutant of PKCdelta prevented the SPC-induced phosphorylation of PLD2. Furthermore, SPC treatment generated reactive oxygen species (ROS) in MS1 cells and the SPC induced production of ROS was inhibited by pretreatment with U73122, BAPTA-AM, and rottlerin. In addition, pretreatment with a PLD inhibitor 1-butanol and overexpression of a lipase-inactive mutant of PLD2 but not PLD1 attenuated the SPC-induced generation of ROS. These results suggest that PLC-, Ca2+-, PKCdelta-, and PLD2-dependent pathways are essentially required for the SPC induced ROS generation.  相似文献   
43.
44.
Constitutive IL-18 expression is detected from many different cells, including macrophages, keratinocytes, and osteoblasts. It has been known that IL-18 gene expression is regulated by two different promoters (p1 promoter and p2 promoter). When RAW 264.7 macrophages were treated with IFN-gamma, IL-18 gene expression was increased in a dose- and time-dependent manner. IFN-gamma activated the inducible promoter 1, but not the constitutive promoter 2. Mutagenesis studies indicated that an IFN consensus sequence-binding protein (ICSBP) binding site between -39 and -22 was critical for the IFN-gamma inducibility. EMSA using an ICSBP oligonucleotide probe showed that IFN-gamma treatment increased the formation of DNA-binding complex, which was supershifted with anti-IFN regulatory factor-1 Ab and anti-ICSBP Ab. Another element, an AP-1 site between -1120 and -1083, was important. EMSA using an AP-1-specific oligonucleotide demonstrated that IFN-gamma or LPS treatment increased the AP-1-binding activity. The addition of anti-c-Jun Ab or anti-c-Fos Ab to IFN-gamma- or LPS-treated nuclear extracts resulted in the reduction of AP-1 complex or the formation of a supershifted complex. Taken together, these results indicate that IFN-gamma increased IL-18 gene expression via ICSBP and AP-1 elements.  相似文献   
45.
Nrf2 plays a role in protection of cells against oxidative stress and xenobiotic damage by regulating cytoprotective genes. In this study, we investigated the effect of Nrf2 on melanogenesis in normal human melanocytes (NHMCs). When NHMCs were transduced with a recombinant adenovirus expressing Nrf2, melanin synthesis was significantly decreased. Consistent with this result, overexpression of Nrf2 decreased the expression of tyrosinase and tyrosinase-related protein 1. The inhibitory effect of Nrf2 was reversed by overexpression of Keap1, an intracellular regulator of Nrf2. Interestingly, Nrf2 overexpression resulted in marked activation of PI3K/Akt signaling. Conversely, inhibition of PI3K activity by treatment with wortmannin reversed the depigmentary effects of Nrf2. Taken together, these results strongly suggest that Nrf2 negatively regulates melanogenesis by modulating the PI3K/Akt signaling pathway.  相似文献   
46.
13C metabolite profiling to quantify the dynamic changes of central carbon metabolites was attempted using mass isotopomer distribution analysis in two yeast strains, Saccharomyces cerevisiae and Kluyveromyces marxianus. Mass and isotopomer balances of the intermediates were examined and calculated in both yeast species and central carbon metabolic fluxes were successfully determined. Metabolic fluxes of pentose phosphate pathway in K. marxianus were 1.66 times higher than S. cerevisiae. The flux difference was also supported by relatively high abundance of partially labeled fructose 6-phosphate and 3-phosphoglycerate as well as an increased concentration of labeled L-valine in K. marxianus. Metabolic flux analysis combined with dynamic metabolite profiling has provided better understanding in the central carbon metabolic pathways of two model organisms and can be applied as a method to analyze more complicated metabolic networks in other organisms.  相似文献   
47.
Mechanoregulation of gene expression in fibroblasts   总被引:3,自引:0,他引:3  
Wang JH  Thampatty BP  Lin JS  Im HJ 《Gene》2007,391(1-2):1-15
Mechanical loads placed on connective tissues alter gene expression in fibroblasts through mechanotransduction mechanisms by which cells convert mechanical signals into cellular biological events, such as gene expression of extracellular matrix components (e.g., collagen). This mechanical regulation of ECM gene expression affords maintenance of connective tissue homeostasis. However, mechanical loads can also interfere with homeostatic cellular gene expression and consequently cause the pathogenesis of connective tissue diseases such as tendinopathy and osteoarthritis. Therefore, the regulation of gene expression by mechanical loads is closely related to connective tissue physiology and pathology. This article reviews the effects of various mechanical loading conditions on gene regulation in fibroblasts and discusses several mechanotransduction mechanisms. Future research directions in mechanoregulation of gene expression are also suggested.  相似文献   
48.
Camouflage conceals animals from predators and depends on the interplay between the morphology and behaviour of animals. Behavioural elements of animals, such as the choice of a resting spot or posture, are important for effective camouflage, as well as the animals’ cryptic appearance. To date, the type of sensory input that mediates resting site choice remains poorly understood. Previously, we showed that bark‐like moths perceive and rely on bark structure to seek out cryptic resting positions and body orientations on tree trunks. In the present study, we investigated the sensory organs through which moths perceive the structure of bark when positioning their bodies in adaptive resting orientations. We amputated (or blocked) each one of the hypothetical sensory organs in moths (antennae, forelegs, wings, and eyes) and tested whether they were still able to perceive bark structure properly and adopt adaptive resting orientations. We found that visual information or stimulation is crucial for adaptively orienting their bodies when resting and tactile information from wings may play an additional role. The present study reveals multimodal information use by moths to achieve visual camouflage and highlights the sensory mechanism that is responsible for the adaptive behaviour of cryptic insects. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 900–904.  相似文献   
49.
Inhibitor of DNA binding 1 (Id1) is a basic helix-loop-helix (bHLH) protein that has a variety of functional roles in cellular events including differentiation, cell cycle and cancer development. In addition, it has been demonstrated that Id1 is related with TGF-β and Smad signaling in various biological conditions. In this study, we investigated the effect of Id1 on TGF-β-induced collagen expression in human dermal fibroblasts. When Id1-b isoform was overexpressed, TGF-β-induced collagen expression was markedly inhibited. Consistent with this result, Id1-b significantly inhibited TGF-β-induced collagen gel contraction. In addition, Id1-b inhibited TGF-β-induced phosphorylation of Smad2 and Smad3. Finally, immunohistochemistry showed that Id1 expression was decreased in fibrotic skin diseases while TGF-β signaling was increased. Together, these results suggest that Id1 is an inhibitory regulator on TGF-β-induced collagen expression in dermal fibroblasts.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号