首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   46篇
  国内免费   1篇
  861篇
  2021年   8篇
  2020年   6篇
  2019年   12篇
  2018年   11篇
  2017年   16篇
  2016年   20篇
  2015年   46篇
  2014年   42篇
  2013年   34篇
  2012年   52篇
  2011年   59篇
  2010年   37篇
  2009年   29篇
  2008年   46篇
  2007年   29篇
  2006年   34篇
  2005年   21篇
  2004年   27篇
  2003年   26篇
  2002年   34篇
  2001年   7篇
  2000年   6篇
  1999年   8篇
  1998年   6篇
  1997年   9篇
  1996年   5篇
  1995年   7篇
  1994年   6篇
  1993年   11篇
  1992年   8篇
  1991年   8篇
  1990年   11篇
  1989年   7篇
  1986年   6篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1976年   4篇
  1971年   4篇
  1970年   8篇
  1968年   7篇
  1967年   6篇
  1966年   11篇
  1962年   5篇
  1959年   4篇
  1957年   6篇
  1956年   4篇
  1955年   4篇
  1954年   5篇
  1951年   4篇
排序方式: 共有861条查询结果,搜索用时 15 毫秒
71.
Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing. In the present study, we have explored the biological function of MELK using MELK-T1, a novel and selective small-molecule inhibitor. Strikingly, MELK-T1 triggered a rapid and proteasome-dependent degradation of the MELK protein. Treatment of MCF-7 (Michigan Cancer Foundation-7) breast adenocarcinoma cells with MELK-T1 induced the accumulation of stalled replication forks and double-strand breaks that culminated in a replicative senescence phenotype. This phenotype correlated with a rapid and long-lasting ataxia telangiectasia-mutated (ATM) activation and phosphorylation of checkpoint kinase 2 (CHK2). Furthermore, MELK-T1 induced a strong phosphorylation of p53 (cellular tumour antigen p53), a prolonged up-regulation of p21 (cyclin-dependent kinase inhibitor 1) and a down-regulation of FOXM1 (Forkhead Box M1) target genes. Our data indicate that MELK is a key stimulator of proliferation by its ability to increase the threshold for DNA-damage tolerance (DDT). Thus, targeting MELK by the inhibition of both its catalytic activity and its protein stability might sensitize tumours to DNA-damaging agents or radiation therapy by lowering the DNA-damage threshold.  相似文献   
72.
Individually stereotyped vocalizations often play an important role in relocation of offspring in gregarious breeders. In phocids, mothers often alternate between foraging at sea and attending their pup. Pup calls are individually distinctive in various phocid species. However, experimental evidence for maternal recognition is rare. In this study, we recorded Weddell seal (Leptonychotes weddellii) pup vocalizations at two whelping patches in Atka Bay, Antarctica, and explored individual vocal variation based on eight vocal parameters. Overall, 58% of calls were correctly classified according to individual. For males (n= 12) and females (n= 9), respectively, nine and seven individuals were correctly identified based on vocal parameters. To investigate whether mothers respond differently to calls of familiar vs. unfamiliar pups, we conducted playback experiments with 21 mothers. Maternal responses did not differ between playbacks of own, familiar, and unfamiliar pup calls. We suggest that Weddell seal pup calls may need to contain only a critical amount of individually distinct information because mothers and pups use a combination of sensory modalities for identification. However, it cannot be excluded that pup developmental factors and differing environmental factors between colonies affect pup acoustic behavior and the role of acoustic cues in the relocation process.  相似文献   
73.
74.
Spontaneous pathologic arterial calcifications in childhood can occur in generalized arterial calcification of infancy (GACI) or in pseudoxanthoma elasticum (PXE). GACI is associated with biallelic mutations in ENPP1 in the majority of cases, whereas mutations in ABCC6 are known to cause PXE. However, the genetic basis in subsets of both disease phenotypes remains elusive. We hypothesized that GACI and PXE are in a closely related spectrum of disease. We used a standardized questionnaire to retrospectively evaluate the phenotype of 92 probands with a clinical history of GACI. We obtained the ENPP1 genotype by conventional sequencing. In those patients with less than two disease-causing ENPP1 mutations, we sequenced ABCC6. We observed that three GACI patients who carried biallelic ENPP1 mutations developed typical signs of PXE between 5 and 8 years of age; these signs included angioid streaks and pseudoxanthomatous skin lesions. In 28 patients, no disease-causing ENPP1 mutation was found. In 14 of these patients, we detected pathogenic ABCC6 mutations (biallelic mutations in eight patients, monoallelic mutations in six patients). Thus, ABCC6 mutations account for a significant subset of GACI patients, and ENPP1 mutations can also be associated with PXE lesions in school-aged children. Based on the considerable overlap of genotype and phenotype of GACI and PXE, both entities appear to reflect two ends of a clinical spectrum of ectopic calcification and other organ pathologies, rather than two distinct disorders. ABCC6 and ENPP1 mutations might lead to alterations of the same physiological pathways in tissues beyond the artery.  相似文献   
75.
The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like).  相似文献   
76.
77.
Defects in the development or maintenance of tubule diameter correlate with polycystic kidney disease. Here, we report that absence of the cadherin regulator p120 catenin (p120ctn) from the renal mesenchyme prior to tubule formation leads to decreased cadherin levels with abnormal morphologies of early tubule structures and developing glomeruli. In addition, mutant mice develop cystic kidney disease, with markedly increased tubule diameter and cellular proliferation, and detached luminal cells only in proximal tubules. The p120ctn homolog Arvcf is specifically absent from embryonic proximal tubules, consistent with the specificity of the proximal tubular phenotype. p120ctn knockdown in renal epithelial cells in 3D culture results in a similar cystic phenotype with reduced levels of E-cadherin and active RhoA. We find that E-cadherin knockdown, but not RhoA inhibition, phenocopies p120ctn knockdown. Taken together, our data show that p120ctn is required for early tubule and glomerular morphogenesis, as well as control of luminal diameter, probably through regulation of cadherins.  相似文献   
78.
79.
Mustard oil (MO) is a plant-derived irritant that has been extensively used in experimental models to induce pain and inflammation. The noxious effects of MO are currently ascribed to specific activation of the cation channel TRPA1 in nociceptive neurons. In contrast to this view, we show here that the capsaicin receptor TRPV1 has a surprisingly large contribution to aversive and pain responses and visceral irritation induced by MO. Furthermore, we found that this can be explained by previously unknown properties of this compound. First, MO has a bimodal effect on TRPA1, producing current inhibition at millimolar concentrations. Second, it directly and stably activates mouse and human recombinant TRPV1, as well as TRPV1 channels in mouse sensory neurons. Finally, physiological temperatures enhance MO-induced TRPV1 stimulation. Our results refute the dogma that TRPA1 is the sole nocisensor for MO and motivate a revision of the putative roles of these channels in models of MO-induced pain and inflammation. We propose that TRPV1 has a generalized role in the detection of irritant botanical defensive traits and in the coevolution of multiple mammalian and plant species.  相似文献   
80.
The melanocortin‐3 receptor (MC3R), a G‐protein‐coupled receptor expressed in the hypothalamus, is a key component of the leptin‐melanocortin pathway that regulates energy homeostasis. It is suggested that an MC3R defect leads to an increased feed efficiency, by which nutrients are partitioned preferentially into fat. In this study, we hypothesized that early‐onset obesity could be induced by mutations in MC3R. To investigate this hypothesis, we screened the entire coding region of the MC3R gene for mutations in obese subjects. A total of 404 overweight and obese children and adolescents, 86 severely obese adults (BMI ≥40 kg/m2), and 150 normal‐weight control adults were included. Besides three synonymous coding variations in the MC3R gene (S69S, L95L, I226I), we were able to identify three novel heterozygous, nonsynonymous, coding mutations (N128S, V211I, L299V) in three unrelated obese children. None of these mutations were found in any of the control subjects. Functional studies assessing localization and signaling properties of the mutant receptors provided proof for impaired function of the L299V mutated receptor, whereas no conclusive evidence for functional impairment of the N128S and V211I mutated receptors could be established. First, these results provide supporting evidence for a role of the MC3R gene in the pathogenesis of obesity in a small subset of patients. Second, they show that caution is called for the interpretation of newly discovered mutations in MC3R.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号