Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [3H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [3H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds. 相似文献
Wickerhamomyces anomalus VKM Y-159 strain produces two types of toxin designated as WAKT a and WAKT b, encoded by chromosomal genes. The WAKT a toxin is heat-labile, pronase sensitive acting in pH range 3-4 affecting on several yeasts including pathogenic Candida species while the WAKT b toxin is protease- and thermo-resistant, acting in pH range 3-7 on two species, Candida alai and Candida norvegica. The rapid decrease of the number of viable cells after toxin treatment demonstrates that both toxins have cytocidic effect. 相似文献
GRACILE (growth retardation, aminoaciduria, cholestasis, iron overload, lactacidosis, and early death) syndrome is a recessively inherited lethal disease characterized by fetal growth retardation, lactic acidosis, aminoaciduria, cholestasis, and abnormalities in iron metabolism. We previously localized the causative gene to a 1.5-cM region on chromosome 2q33-37. In the present study, we report the molecular defect causing this metabolic disorder, by identifying a homozygous missense mutation that results in an S78G amino acid change in the BCS1L gene in Finnish patients with GRACILE syndrome, as well as five different mutations in three British infants. BCS1L, a mitochondrial inner-membrane protein, is a chaperone necessary for the assembly of mitochondrial respiratory chain complex III. Pulse-chase experiments performed in COS-1 cells indicated that the S78G amino acid change results in instability of the polypeptide, and yeast complementation studies revealed a functional defect in the mutated BCS1L protein. Four different mutations in the BCS1L gene have been reported elsewhere, in Turkish patients with a distinctly different phenotype. Interestingly, the British and Turkish patients had complex III deficiency, whereas in the Finnish patients with GRACILE syndrome complex III activity was within the normal range, implying that BCS1L has another cellular function that is uncharacterized but essential and is putatively involved in iron metabolism. 相似文献
Photoinhibition of PSII occurs at the same quantum efficiency from very low to very high light, which raises a question about how important is the rate of photosynthetic electron transfer in photoinhibition. We modulated electron transfer rate and light intensity independently of each other in lincomycin-treated pea leaves and in isolated thylakoids, in order to elucidate the specific effects of light and PSII electron transport on photoinhibition. Major changes in the rate of electron transport caused only small changes in the rate of photoinhibition, suggesting the existence of a significant photoinhibitory pathway that contains an electron-transfer-independent phase. We compared the action spectrum of photoinhibition with absorption spectra of PSII components that could function as photoreceptors of the electron-transfer-independent phase of photoinhibition and found that the absorption spectra of Mn(III) and Mn(IV) compounds resemble the action spectrum of photoinhibition, showing a steep decrease from UV-C to blue light and a low visible-light tail. Our results show that the release of a Mn ion to the thylakoid lumen is the earliest detectable step of both UV- and visible-light-induced photoinhibition. After Mn release from the oxygen-evolving complex, oxidative damage to the PSII reaction center occurs because the Mn-depleted oxygen-evolving complex cannot reduce P680+ normally. 相似文献
A colchicine-binding assay and quantitative sodium dodecyl sulfate gel electrophoresis have been used to determine the changes which occur in microtubule protein (tubulin) concentrations in the particulate and soluble fractions of mouse oviduct homogenates during that period of development when centriole formation and cilium formation are at a maximum. When mouse oviducts, at various ages after birth, are homogenized in Tris-sucrose buffer, tubulin concentration is partitioned between the soluble (70%) and particulate (30%) fractions. During the period of most active organelle formation (3–12 days), there is a marked increase in colchicine-binding specific activity, in both the soluble and particulate fractions. Microtubule protein concentration increases from 16 to 24% in the soluble fraction, declining to 14% in the adult. In the particulate fractions, microtubule protein concentration increases from 16 to 27%, leveling off at 16% in the adult. We have concluded from these observations and from electron microscopy that colchicine-binding activity in the particulate fractions is related to the presence of centriole precursors in the pellets of homogenized oviducts from newborn mice. These data further suggest that centriole precursor structures are conveniently packaged aggregates of microtubule protein actively synthesized between 3 and 5 days, and maintained at a maximum during the most active period of organelle assembly. 相似文献
Sleep problems during pregnancy impair maternal health and increase the risk for adverse pregnancy outcome. The circadian preference toward eveningness has been associated with sleep problems in previous studies. Here, we studied whether evening-type women had more sleep problems during their pregnancy, as compared with other chronotypes, in a sample consisting of 1653 pregnant women from the Finnish CHILD-SLEEP Birth Cohort. Chronotype was assessed with a shortened version of the morningness–eveningness questionnaire. Pregnant evening-type women reported more sleep problems, including troubles of falling asleep (OR = 3.4, p < 0.0001), poor sleep quality (OR = 2.9, p < 0.01) and daily tiredness (OR = 3.2, p < 0.0001) than the morning-type women, even after controlling for sleep duration and sleep deprivation. They had higher scores on Epworth Sleepiness Scale (p < 0.05), Basic Nordic Sleep Questionnaire (p < 0.0001) and Global Seasonality Score (p < 0.01) and were also more often smokers, also during pregnancy (p < 0.001) and reported poorer general health (p < 0.001) than the morning-type women. They also reported having had more sleep problems during their childhood (OR = 1.5, p < 0.05) and adolescence (OR = 2.0, p < 0.001) than the morning-type women. Our results indicate that eveningness is associated with more sleep problems and unhealthy life habits during pregnancy. 相似文献
The topoisomerase IIα inhibitor etoposide is a ‘broad spectrum’ anticancer agent and a potent inducer of DNA double strand breaks. DNA damage response of mammalian cells usually involves cell cycle arrest and DNA repair or, if unsuccessful, cell death. We investigated these processes in the human colon cancer cell line HT-29 treated with three different etoposide regimens mimicking clinically relevant plasma concentrations of cancer patients. Each involved a period of drug-free incubation following etoposide exposure to imitate the decline of plasma levels between the cycles of chemotherapy. We found a massive induction of double strand breaks that were rapidly and nearly completely fixed long before the majority of cells underwent apoptosis or necrosis. An even greater percentage of cells lost clonogenicity. The occurrence of double strand breaks was accompanied by a decrease in the levels of Ku70, Ku86 and DNA-PKcs as well as an increase in the level of Rad51 protein. Twenty-four hours after the first contact with etoposide we found a pronounced G2/M arrest, regardless of the duration of drug exposure, the level of double strand breaks and the extent of their repair. During the subsequent drug-free incubation period, the loss of clonogenicity correlated well with the preceding G2/M arrest as well as with the amount of cell death found several days after exposure. However, it correlated neither with early apoptosis or necrosis nor with any of the other investigated parameters. These results suggest that the G2/M arrest is an important determinant in the cytostatic action of etoposide and that the removal of DNA double strand breaks is not sufficient to ensure cell survival. 相似文献
Low temperature is amongst the most influential abiotic stress factors, having deep impact on plant growth, yield and productivity. Studies on beneficial effects of certain biologically active substances, S-methylmethionine (SMM) and salicylic acid (SA) have provided a lot of valuable information regarding their role to counteract harmful effects of environmental stresses such as chilling. To obtain a more complex and stable defence compound with an extended range of stress-protective effect, the new derivative S-methylmethionine salicylate (MMS) was synthesised from the natural, biologically active substances SMM and SA. Since both original materials have complex stress-protective roles, the new compound was expected to combine the effects of original substances and to stabilise the unstable SMM in the new compound, thus providing an extended stress tolerance. Photosynthetic efficiency and accumulation of stress-related metabolites (polyamines and flavonoids) were measured in chilled and control plants, with and without MMS pretreatment, and expression changes of several genes involved in the cold stress response were analysed by quantitative real-time PCR (RT-qPCR) and a detailed microarray study. Our data show how the MMS combines the effect of SMM and SA on molecular level, causing numerous changes in the gene expression pattern and metabolite content. MMS gives rise to a better physiological condition, thus it could provide an alternative, environmental friendly way to enhance the plants defence mechanisms against stressors. As MMS is more stable than SMM, it promises easier, more long-lasting and more cost-effective usage in agriculture, with a complementing effect of SA.